We hope you enjoy this sample PDF of our special 20th anniversary book. The full book is 78 pages
and features a curated collection of 20 articles, a visual timeline of important milestones, and an
introduction from thoughtbot Founder and CEO, Chad Pytel.

Learn more and purchase the full version at https://thoughtbot.com/resources/20-for-20.

https://thoughtbot.com/resources/20-for-20

thoughtbot

//\\

Year
Journey

'\

Sample

Table of Contents
Intro ii
Timeline 02
Blog Posts 06

TESTING AND GOOD CODE PRACTICES

Let's Not - Joe Ferris 06
The Case for WET Tests - Amanda Beiner 12
Testing from the Outside-In - Joél Quenneville 17
Write Readable Code - Edward Loveall 20
Avoid the Three-state Boolean Problem - Gabe Berke-Williams 23

DEI AND TEAMWORK

Pay the cost up front. Don't distribute it to others. - German Velasco 25
. DEI: Speaking Up About Our Values - Christopher Kuttruff, Mina Slater & Sally Hall 28
Working in my native language requires empathy - Matheus Richard 30
Private Messages are not Inclusive - Stephen Lindberg 32
Pairing is Caring - Valeria Graffeo 34
DESIGN
Start with the problem - Christian Reuter 36
Best practices for designing apps people actually use - Devin Jameson 38
Tailwind and the Femininity of CSS - Elaina Natario 42
It’s Only Color - Mike Borsare 44
PROCESS
Working Iteratively - Joél Quenneville 52
How to Estimate Feature Development Time: Maybe Don't - Amanda Beiner 57
Investment Time - lan Zabel and Dan Croak 61
Moving Beyond, Not Getting Over, Imposter Syndrome - Stephanie Minn 65
Choosing processes that build trust - Amanda Beiner 67
Say no to more process, say yes to trust - German Velasco VAl

Credits 74

Founder & CEO

| started thoughtbot in 2003 with four friends from
university. We didn't have a grand vision for what we
hoped to achieve. We mostly wanted to keep
working together, creating cool things.

It wasn't until after two fairly mediocre years that
thoughtbot truly became thoughtbot. That was
when three of the original founders decided to go
and get regular jobs.

Being faced with the choice of sticking with it, or
giving up - and then choosing to stick with it, put us
in a completely different mindset.

We realized that it wasn’t worth continuing if we
weren't happy and fulfilled in our work.

So we started to be much more clear about what we
believed about the way products should be
designed and built, and how companies should be
run.

That was September of 2005, and on November 6,
2005, the first two articles were posted to our blog,
Giant Robots Smashing into other Giant Robots:
The Correct Amount of Planning and Try Ruby!.

Introduction
by Chad Pytel

Since that time, as we've continued to try to find
better ways of working, our blog has been an
important part of sharing what we learn along the
way.

We're excited to share this curated list of 20 blog
posts in celebration of our 20th anniversary, along
with a visual timeline of important milestones.

To compile these articles we reviewed the more
than 2,100 blog posts we've made in the history of
the blog and narrowed it down to these 20 gems.

thoughtbot hasn't lasted this long, and
accomplished what we've done solely through my
efforts.

It has also been through the efforts of hundreds of
team members over the years. My heartfelt thanks
go out to everyone who has contributed to both
thoughtbot, and our blog, over the years.

And thank you for reading.

https://thoughtbot.com/blog/the-correct-amount-of-planning
https://thoughtbot.com/blog/try-ruby

A 20-year journey

20 years is a long time, and so much has happened over our history. We
couldn’t have predicted where thoughtbot would be today, but it's been an
exciting journey, packed with learning and experiences. Every step is an
adventure and inspiration for the next 20 years to come.

Here are some of our major milestones so far.

SEPTEMBER 9, 2005 ‘
A turning point

3 of the original founders leave and we
reincorporate as thoughtbot, inc.

JUNE 2, 2003

thoughtbot founded

A partnership between five /

WPI graduates and friends.

‘ NOVEMBER 6, 2005 ~

Our Blog Starts

The first two articles are posted to our blog:
The Correct Amount of Planning and Try

Ruby!. The blog looked something like this:

2005 blog.

01

https://thoughtbot.com/blog/the-correct-amount-of-planning
https://thoughtbot.com/blog/try-ruby
https://thoughtbot.com/blog/try-ruby
https://images.thoughtbot.com/ten-years-of-the-giant-robots-blog/NIvE6EayReawcfVO5vsu_2006-blog.png

Testing from the
outside in

Joél Quenneville - June 9,2014 | Updated March 6, 2019

A few months ago my colleague Josh Steiner wrote a comprehensive post on How We Test Rails
Applications, detailing the different types tests we write and the various technologies that go with
them. In this follow up, we will take a closer look at thoughtbot’s testing workflow.

We use a process known as “Outside-in testing”, driving our development from high-level tests and
working our way down to lower-level concerns. Say we are working on an e-commerce site and want
to implement the following story:

As a guest, | can add items to my shopping cart so that | can keep on shopping

Before we start thinking about models, controllers, or other architectural concerns we write a high-
level RSpec feature test that describes the behavior from the user’s perspective.

spec/features/guest_adds items_to_shopping cart_spec.rb
feature 'Guest adds items to shopping cart' do
scenario 'via search' do
item = create(:item)

visit root_path
fill_in 'Search', with: item.name
click_on 'Search Catalogue'

click_on item.name
click_on 'Add to Cart'
click_on 'Shopping Cart'

expect(page).to have_content(item.name)
expect(page).to have_content("Subtotal: #{item.price}")
end
end

(72]
w
=
=
Q
<
o
o
w
o
o
(3]
o
o
o
(Y
Q
Zz
<
(Y}
=
=
(7]
w
=

—
~

https://twitter.com/josh_steiner
https://thoughtbot.com/blog/how-we-test-rails-applications
https://thoughtbot.com/blog/how-we-test-rails-applications
https://thoughtbot.com/blog/authors/joel-quenneville

Testing from the outside in

cont’d

Depending on how much of the application is implemented, this test could break in multiple places. If
this were a newly-generated application we might need to implement a home page. Once we have a
home page we would probably get an error while attempting to use the search bar saying that ‘No
such route exists’. This leads us to implement a /items route.

config/routes.rb
7 ...

resources :items, only: [:index]
7 ...

The next few errors walk us through creating an ItemsController, with an empty index action and
corresponding view. Now that we can successfully click on “Search Catalogue”, we get an error
saying that there the desired item does not appear in the search results so we expose some items in
the controller and display them in the view.

app/controllers/items_controller.rb
#. ..
def index
ditems = Item.search(params[:search_query])
end
#...

app/views/items/index.html.erb
<% aitems.each do |item| %>

<%= link_to item.name, item %>
<% end %>

This gives us a new error saying that there is no method search defined Item. At this point, we drop
down a level of abstraction and write a unit test for Item.

(72]
w
=
=
Q
<
o
o
w
o
o
(3]
o
o
o
(Y
Q
Zz
<
(Y}
=
=
(7]
w
=

—
0o

Testing from the outside in

cont’d

spec/models/item_spec.rb
describe Item, '.search' do
it 'filters items by the search term' do
desired item = create(:item)

other_item = create(:item)

expect(Item.search(desired_item.name)).to eq [desired_item]

end
end

This test leads us to correctly implement Item.search:

app/models/item.rb
#...
def self.search(term)

where(name: term)

Now the unit test passes so we go back up to
our feature test. We can successfully click on
the item’s name in the search results!

We keep following this pattern for the remaining
test failures, dropping down to the unit test
level when necessary, until we have a green test
suite. Now our story has been successfully
implemented!

Mocking and Stubbing

The goal of a feature test is to test the real
system from end-to-end from the user’s
perspective. To do this, we use real database
records and don’t mock or stub any of our
objects. We do stub calls to external websites
(via webmock or a fake) since the network can
be unreliable. Our tests should run without an
internet connection.

When dropping down to the unit test level, we
aggressively mock/stub out dependencies and
collaborators. The goal of a unit test is to prove
the functionality of the object being tested, not
the functionality of its collaborators. Difficulty in
testing two objects in isolation from each other
often points to too tight coupling between them.

Further Reading

For some more great articles on testing, check
out:

e How we Test Rails Applications
e Don't Stub the System Under Test
o Feature tests with Capybara

(72]
w
=
=
Q
<
o
o
w
o
o
(3]
o
o
o
(Y
Q
Zz
<
(Y}
=
=
(7]
w
=

-
©

https://thoughtbot.com/blog/how-we-test-rails-applications
https://thoughtbot.com/blog/don-t-stub-the-system-under-test
https://thoughtbot.com/blog/using-capybara-to-test-javascript-that-makes-http

Write Readable Code

Edward Loveall - March 18, 2022

Code is read more than it’s written. We write it once, and then read it back. It goes through review if

we're on a team. It is read again when someone else needs to understand, add to, or modify that code.

This includes ourselves weeks or months later.

Despite this, we tend to focus on the writing as the main “action”. Writing is very important, but
before we write we need to understand the context. We must read before we write. It's much easier to
understand code if it’s written well. Even in write-heavy situations like a new codebase, we eventually
have to come back and read our first steps. We should optimize code to be read.

Names describe what variables, methods, classes are or what they do. They outline the system we’re
working with. It’s much easier to write terse names. They keep our lines short and make it easy to
type those names again and again. For example cc = CreditCard.find instead of primary_card, or
def set_attrinstead of set_user_profile_attribute.

The problem is that non-descriptive names like cc or set_attr require further investigation to
discover what they are and how they should be used. These examples favor easy writing, not reading.

Consider the concepts you learned to write this code, and try to capture that in names. Consider the
why or how something is used instead of what it is. initial_sign_up_profile says a lot more than
profile,and lock_stats_table_for_data_export says more than lock_db.

Readability is the goal here, not name length. You can absolutely make unreadable code with long
names, especially lots of long names that are too similar. Go for readability, not some arbitrary length
metric.

Abstracting Procedural Logic

The code we write to manipulate a system is different from the way we describe that manipulation.
Imagine the process of “showing a modal dialog”. That’s how we'd describe it, even to code-proficient
colleagues. We don’t often describe this as “find the appropriate related DOM element and set CSS
classes to be visible” but that’s the level that code thinks on. It’s our job to translate between those
levels of abstraction.

When you have a long method, the classic fix is extract method. Extract method works by breaking
up our unrefined code into named abstractions representing the underlying logic. Again, we’re back
to naming, but with a slightly different goal. A good name allows you to describe the functionality in a
way that doesn’t require the user to know every internal piece of the system. It allows them to learn
(or re-learn) the deeper details as needed.

()
w
=
=
(3)
<
x
o
1]
(a]
o
(3]
(=]
o
(o]
o
[a]
4
<
(<]
=
[
()
w
[

N
o

https://thoughtbot.com/blog/authors/edward-loveall
https://thoughtbot.com/blog/storytellers/
https://thoughtbot.com/blog/name-it/
https://thoughtbot.com/blog/acceptance-tests-at-a-single-level-of-abstraction
https://refactoring.guru/smells/long-method/
https://refactoring.guru/extract-method/

Write Readable Code

cont’d

Here’s an example of showing a modal with JavaScript:

function async showModal(event) {
const target = event.target;
const modal = document.querySelector(
event.target.dataset.relatedModalSelector
);
if (!modal || !modal.classList.contains("modal")) {
return;

}

for (const element of document.querySelectorAll("modal")) {
element.classList.add("hidden");

}

data = modal.dataset;

modalTitle = JSON.parse(data.display)["title"];
modalContent = await fetchModalData(data.remoteUrl);
innerHtml = modalContent;
classList.remove("hidden");

If you already know how the modal system works, this is reasonable to read. But most people don’t
keep that information in their heads at all times. Abstracting this procedural logic will help anyone
looking at this code with fresh eyes understand where they need to make changes:

function async showModal(event) {
const modal = this.findPossibleModal(event);
if (!this.isValidModal(modal)) {
return;

}

await this.setModalContent(modal);
this.hideEveryModal();
this.revealModal(modal)

TESTING AND GOOD CODE PRACTICES

N
-

Write Readable Code

cont’d

The refactor makes the necessary steps for displaying modals clear and easily understood. If we
need, we can find specific implementation details in extracted methods, and it's immediately clear
what each method is doing. All the pieces exist on a similar level of abstraction; in this case
manipulating related DOM elements. The encapsulating method showModal is an abstraction, too,
that exists with abstractions on a similar level. It’s easy to imagine other nearby interactions like
submitForm, syncUserProgress, or enableFocusMode.

Testing

When testing, it’s relatively common to isolate the setup phase from the rest of the test using
abstractions like let or before. Many tests in the same file require similar (or the same) pieces of
context to run, so consolidating that setup feels like a natural way to DRY up a test. Grouping related
code can also feel similar to abstraction.

But this makes tests harder to read. That setup code defines the state of the system. More often than
not we haven't seen these tests recently or ever. These pieces of setup are critical to understanding
how to fix existing tests or add more. A test separated from its context forces us to memorize that
context which distracts from our problem solving skills. A good test tells a story.

Most tests also test a system in multiple states; no single setup can speak for all scenarios. At best,
shared setup will have to be redefined for individual tests, scatting that context. At worst, setup is
entirely wasted as global setup goes unused. When we put shared setup at the top, we are assuming
that all future tests need this particular setup. Write a few more tests and that assumption will likely
prove false, causing us to reorganize the whole file or just live with the waste.

Keeping all of that setup inline makes that test much more readable. It’s staggeringly not DRY, but
DRY isn’t a useful goal for tests. We do not need tests to be built on reusable abstractions and have a
short line count. We need tests to give us predictable confidence in our system and help us refactor.

Broader Goals

It's worth remembering that specific metrics like code complexity, test coverage, and “DRY” aren’t
goals by themselves. The goal is code that we can easily understand and confidently change to give
users the best possible software. Although “readable” is harder to measure, having it as a guiding
principle can help us know when to bend or break these quantitative rules and build better software.

()
w
=
=
(3)
<
x
o
1]
(a]
o
(3]
(=]
o
(o]
o
[a]
4
<
(<]
=
[
()
w
[

[\
N

https://thoughtbot.com/blog/four-phase-test/
https://thoughtbot.com/blog/lets-not
https://thoughtbot.com/blog/the-self-contained-test/
https://thoughtbot.com/blog/the-case-for-wet-tests/
https://commadot.com/wtf-per-minute/

Avoid the Three-state
Boolean Problem

Gabe Berke-Williams - February 24,2014 | Updated March 6, 2019

Quick, what’s wrong with this Rails migration?

add_column :users, :admin, :boolean

Yep - it can be null. Your Boolean column is supposed to be only true or false. But now you're in the
madness of three-state Booleans: it can be true, false, or NULL.

Why to avoid NULL in Boolean columns

Boolean logic breaks down when dealing with NULLs. This StackOverflow answer goes into detail.

For example:
e true AND NULL is NULL (not false)
e true AND NULL OR falseis NULL

Fortunately, it’s easy to fix.

NOT NULL

Adding a NOT NULL constraint means that you'll never wonder whether a NULL value means that the
user is not an admin, or whether it was never set. Let’s add the constraint:

add_column :users, :admin, :boolean, null: false

But now the migration doesn’t run.

Set a default value

The NOT NULL constraint means that this migration will fail if we have existing users, because
Postgres doesn’t know what to set the column values to other than NULL. We get around this by
adding a default value:

add_column :users, :admin, :boolean, null: false, default: false

(72]
w
=
=
Q
<
o
o
w
o
o
(3]
o
o
o
(Y
Q
Zz
<
(Y}
=
=
(7]
w
=

N
w

https://thoughtbot.com/blog/authors/gabe-berke-williams
https://softwareengineering.stackexchange.com/questions/133600/should-i-store-false-as-null-in-a-boolean-database-field

Avoid the Three-state
Boolean Problem

cont’d

Now our migration runs, setting all users to be not admins, which is the safest option. Later, we can
set specific users to be admins. Now we’re safe and our data is normalized.

What’s next

For more on the danger of null values, read If You Gaze Into nil, nil Gazes Also Into You. You can also
browse our Postgres-related blog posts.

(/2]
w
=
=
(3}
<
ox
o
w
o
o
(3]
o
o
o
(&
Q
4
<
(<]
=
[
(72)
w
=

N
S

https://thoughtbot.com/blog/if-you-gaze-into-nil-nil-gazes-also-into-you
https://thoughtbot.com/blog/tags/postgres

Pay the cost up front.

German Velasco - October 2,2020

In our world of rapid communication, it’s easy to forget how disruptive our communication practices
can be. We seldom stop to think about how we interrupt others. I'm no exception.

Lately, I've been trying to consider the golden rule for time: treat others’ time as you like yours to be
treated. In practice, | find that means paying the cost up front with my time instead of distributing it
to others.

What do | mean? Let’s look at these cases:

Meetings

Can you still remember the times when someone would tap you on the shoulder and ask to chat
“really quick”? Nothing like an impromptu meeting to stop you from finishing the task you were
working on. What was the meeting about? Who knows. But we were there anyway, so why not grab a
room? Now we do “quick calls”.

Those meetings weren’t always bad. Neither are the quick calls. But too often, they are our first
reaction to uncertainty. Our day is soon consumed with “quick calls” and “brief meetings”, and our
real work becomes the glue between them. Or maybe something worse happens — we get your
actual work done outside of work hours when calls and meetings don’t get in the way.

What if we paid the cost up front and planned the meeting ahead of time?
No meeting should be scheduled without a clear goal — a way of knowing when the participants
meet the meeting’s purpose. Who knows, you might realize you can send an email with questions and

avoid the meeting altogether — what a victory!

And if you still need a meeting, have a goal for the meeting, a plan, and a hard stop. All the
preparation will likely shorten the time it takes to meet.

Pay the cost up front by planning. Don’t spread that cost to the people you invite to the meeting and
compound the cost to your company.

DEI AND TEAMWORK

N
ol

https://en.wikipedia.org/wiki/Golden_Rule
https://thoughtbot.com/blog/authors/german-velasco

Pay the cost up front.

cont’d

Messages

Have you ever been focused on solving the toughest problem in computer science, when a Slack
notification pops up saying, “ hi”? You quickly open Slack — the solution escaping your thoughts
— only to realize it was a direct message, and the person is just now typing a question.

german.velasco 12:13 PM

A\

« hi

...german.velasco is writing

Someone is giving your their stream of consciousness without regard for what you were doing. Oh,
and that solution you had in mind, it’s long gone.

It's good to be a team player, so be kind if you receive that message. But be a good team player and
don’t send that kind of message.

When considering sending a direct message, ask yourself, is it urgent? If so, go ahead with it.
Synchronous communication directly wired to people’s brains is there for that reason. But direct
messages should be the exception.

If you need to ask a question, ask it on a public channel. Others might know the answer to your
question Chappens surprisingly often).

DEI AND TEAMWORK

N
(o))

https://thoughtbot.com/blog/empathy-online

Pay the cost up front.

cont’d

And when you write the question, take the time to state it fully. Include what you have tried and why
it didn’t work. When you do that, you might:

 discover you already have the answer, or

* realize haven’t done enough digging on your own, or

e prepare a great question with all the context needed so that someone can help you.

Pay the cost up front by thinking through the question. Don’t spread the cost to others by
interrupting their concentration.

Pull requests

Have you ever been requested to review a 1000+ line pull request (PR)? Say good bye to your plans
for that day, right?

The time trade-off is evident with pull requests. Time saved by the author of a large pull request
directly translates to extra time spent by reviewers.

If you're the author of that work, don’t open that monstrous PR. Spend some time trying to split it
into independent commits and separate PRs. But be warned: it could take a significant amount of
time.

Creating small, independent PRs is challenging work, and it takes a lot of your time. You could spend
an extra 4 hours reorganizing the code! You might think it wasteful. But what if that saves each
reviewer 4 hours of their time? Well, you just saved your team a whole lot of time and effort. Pay the
cost up front. Don't distribute it to others.

Work tickets

What about work tickets that have single-line descriptions without any context? They’re useful
placeholders, but it’s tough to start work like that.

When writing a description for a ticket, spend some time to write out what needs to happen, why it
needs to happen, and potential pitfalls you've already considered. It can save the person taking the
ticket hours of their time, and in this case, probably yours too.

If things are unclear, they’ll probably send you a direct message and say “N hi". They’'ll then ask you
what the ticket is all about, or more likely, they’ll ask if you can hop on a “quick” call with them and
another developer to figure out what the ticket is all about. Avoid that by paying the cost up front.
Don't distribute it to others.

DEI AND TEAMWORK

N
~

Credits

Copyright © 2023, thoughtbot, inc. All rights reserved.

The Ruby logo is Copyright © 20086, Yukihiro Matsumoto. It is licensed under the terms of the
Creative Commons Attribution-ShareAlike 2.5 License agreement.

XKCD Comic #2138, included in The Case for WET Tests, is Creative Commons Attribution-
NonCommercial 2.5 License, with permission.

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the benefit
of the trademark owner, with no intention of the infringement of the trademark.

https://www.ruby-lang.org/en/about/logo/
http://creativecommons.org/licenses/by-sa/2.5/
https://xkcd.com/2138/
https://creativecommons.org/licenses/by-nc/2.5/
https://creativecommons.org/licenses/by-nc/2.5/
https://xkcd.com/license.html

