

Maybe Haskell

Pat Brisbin

May 4, 2015

Contents

Introduction iii

An Alternate Solution . iii

Required Experience . iv

Structure . v

What This Book is Not . vi

Haskell Basics 1

Our Own Data Types . 5

Pattern Matching . 6

Sum Types . 7

Kinds and Parameters . 8

Maybe . 11

Don’t Give Up . 12

Functor 14

Choices . 15

Discovering a Functor . 16

About Type Classes . 17

i

CONTENTS ii

Functor . 18

The Functor Laws . 19

Why Is This Useful? . 24

Curried Form . 25

Recap . 29

Applicative 30

Hiding Details . 31

Follow The Types . 32

Apply . 33

Chaining . 35

Applicative In the Wild . 36

Monad 39

More Power . 40

And Then? . 40

Bind . 42

Chaining . 42

Do Notation . 43

Wrapping Up . 46

Other Types 48

Either . 48

List . 55

IO . 62

What’s Next 71

Introduction

As a programmer, I spend a lot of time dealing with the fallout from one specific
problem: partial functions. A partial function is one that can’t provide a valid result
for all possible inputs. If you write a function (or method) to return the first ele-
ment in an array that satisfies some condition, what do you do if no such element
exists? You’ve been given an input for which you can’t return a valid result. Aside
from raising an exception, what can you do?

The most popular way to to deal with this is to return a special value that indicates
failure. Ruby has nil, Java has null, andmany C functions return -1 in failure cases.
This is a huge hassle. You now have a system in which any value at any time can
either be the value you expect or nil, always.

For instance, if you try to find a User, and then treat the value you get back as if it’s
a User but it’s actually nil, you get a NoMethodError. What’s worse, that error may
not happen anywhere near the problem’s source. The line of code that created
that nilmay not even appear in the eventual backtrace. The result is various “nil
checks” peppered throughout the code. Is this the best we can do?

The problem of partial functions is not going away. User input may be invalid, files
may not exist, networks may fail. We will always need a way to deal with partial
functions. What we don’t need is null.

An Alternate Solution

In languages with sufficiently expressive type systems, we have another option:
we can state in the types that certain values may not be present. Functions that

iii

INTRODUCTION iv

typically are written in a partial way can instead be defined to return a type that
captures any potential non-presence. Not only does this make it explicit and “type
checked” that you have code to handle the case when a value isn’t present, it also
means that if a value is not of this special “nullable” type, you can feel safe in as-
suming the value is really there. In short: no nil checks are required.

The focus of this book will be how Haskell implements this idea via the Maybe data
type. This type and all the functions that deal with it are not built-in, language-level
constructs. Instead, this is all implemented as libraries, written in a very straight-
forward way. In fact, we’ll write most of that code ourselves over the course of this
short book.

Haskell is not the only language to have such a construct. For example, Scala has
a similar Option type and Swift has Optional with various built-in syntax elements
to make its usage more convenient. Many of the ideas implemented in these lan-
guages were lifted directly from Haskell. If you happen to use one of them, it can
be good to learn where the ideas originated.

Required Experience

I’ll assume no prior Haskell experience. I expect that those reading this book will
have programmed in other, more traditional languages, but I’ll also ask that you
actively combat your prior programming experience.

For example, you’re going to see code like this:

countEvens = length . filter even

This is a function definition written in an entirely different style than you may be
used to. Even so, I’ll bet you can guess what it does, and even get close to how
it does it: filter even probably takes a list and filters it for only even elements.
length probably takes a list and returns the number of elements it contains.

Given those fairly obvious facts, you might guess that putting two things together
with (.)must mean you do one and then give the result to the other. That makes
this expression a function that must take a list and return the number of even
elements it contains. Without mentioning any actual argument, we can directly
assign this function the name countEvens. There’s no need in Haskell to say that

INTRODUCTION v

count-evens of some x is to take the length after filtering for the even values of
that x. We can state directly that count-evens is taking the length after filtering for
evens.

This is a relatively contrived example, but it’s an indication of the confusion that
can happen at any level: if your first reaction is “such weird syntax! What is this
crazy dot thing!?”, you’re going to have a bad time. Instead, try to internalize the
parts that make sense while getting comfortable with not knowing the parts that
don’t. As you learn more, the various bits will tie together in ways you might not
expect.

Structure

We’ll spend this entire book focused on a single type constructor called Maybe. We’ll
start by quickly covering the basics of Haskell, but only far enough that we can
see the opportunity for such a type and can’t help but invent it ourselves. With
that type defined, we’ll quickly see that it’s cumbersome to use. This is because
Haskell has taken an inherently cumbersome concept and put it right in front of
us by naming it, and by requiring we deal with it at every step.

From there, we’ll explore three type classes whose presence will make our lives far
simpler. We’ll see that Maybe has all the properties required to call it a functor, an
applicative functor, and even a monad. These terms may sound scary, but we’ll go
through them slowly, each concept building on the one before. These three in-
terfaces are crucial to how I/O is handled in a purely functional language such as
Haskell. Understanding themwill open your eyes to a whole newworld of abstrac-
tions and demystify some notoriously opaque topics.

Finally, with a firm grasp on how these concepts operate in the context of Maybe,
we’ll discuss other types that share these qualities. This is to reinforce the fact that
these ideas are abstractions. They can be applied to any type that meets certain
criteria. Ideas like functor and monad are not limited to, or specifically tied to, the
concept of partial functions or nullable values. They apply much more broadly to
things like lists, trees, exceptions, and program evaluation.

INTRODUCTION vi

What This Book is Not

I don’t intend to teach you Haskell. Rather, I want to show you barely enough
Haskell that I can wade into somemore interesting topics. I want to show how this
Maybe data type can add safety to your code base while remaining convenient, ex-
pressive, and powerful. My hope is to show that Haskell and its “academic” ideas
are not limited to PhD thesis papers. These ideas can result directly in cleaner,
more maintainable code that solves practical problems.

I won’t describe how to set up a Haskell programming environment, show you how
to write and run complete Haskell programs, or dive deeply into every language
construct that we’ll encounter. If you are interested in going further and actually
learning Haskell (and I hope you are!), then I recommend following Chris Allen’s
great learning path.

Finally, a word of general advice before you get started:

The type system is not your enemy. It’s your friend. It doesn’t slow you down; it
keeps you honest. Keep an open mind. Haskell is simpler than you think. Monads
are not somemystical burrito. They’re a simple abstraction that, when applied to a
variety of problems, can lead to elegant solutions. Don’t get bogged down in what
you don’t understand. Instead, dig deeper into what you do. And above all, take
your time.

https://github.com/bitemyapp/learnhaskell

Haskell Basics

When we declare a function in Haskell, we first write a type signature:

five :: Int

We can read this as five of type Int.

Next, we write a definition:

five = 5

We can read this as five is 5.

In Haskell, = is not variable assignment, it’s defining equivalence. We’re saying
here that the word five is equivalent to the literal 5. Anywhere you see one, you
can replace it with the other and the program will always give the same answer.
This property is called referential transparency and it holds true for any Haskell
definition, no matter how complicated.

It’s also possible to specify types with an annotation rather than a signature. We
can annotate any expression with :: <type> to explicitly tell the compiler the type
we want (or expect) that expression to have.

almostThird = (3 :: Float) / 9

-- => 0.3333334

actualThird = (3 :: Rational) / 9

-- => 1 % 3

1

CHAPTER 1. HASKELL BASICS 2

We can read these as almostThird is 3, of type Float, divided by 9 and actualThird

is 3, of type Rational, divided by 9.

Type annotations and signatures are usually optional, as Haskell can almost always
tell the type of an expression by inspecting the types of its constituent parts or
seeing how it is eventually used. This process is called type inference. For example,
Haskell knows that actualThird is a Rational because it saw that 3 is a Rational.
Since you can only use (/) with arguments of the same type, it enforced that 9 is
also a Rational. Knowing that (/) returns the same type as its arguments, the final
result of the division must itself be a Rational.

Good Haskellers will include a type signature on all top-level definitions anyway. It
provides executable documentation and may, in some cases, prevent errors that
occur when the compiler assigns a more generic type than you might otherwise
want.

Arguments

Defining functions that take arguments looks like this:

add :: Int -> Int -> Int

add x y = x + y

The type signature can be confusing because the argument types are not sepa-
rated from the return type. There is a good reason for this, but I won’t go into it
yet. For now, feel free to mentally treat the thing after the last arrow as the return
type.

After the type signature, we give the function’s name (add) and names for any ar-
guments it takes (x and y). On the other side of the =, we define an expression
using those names.

Higher-order functions

Functions can take and return other functions. These are known as higher-order
functions. In type signatures, any function arguments or return values must be
surrounded by parentheses:

http://learnyouahaskell.com/higher-order-functions

CHAPTER 1. HASKELL BASICS 3

twice :: (Int -> Int) -> Int -> Int

twice f x = f (f x)

twice (add 2) 3

-- => 7

twice takes as its first argument a function of type (Int -> Int). As its second ar-
gument, it takes an Int. The body of the function applies the first argument (f) to
the second (x) twice, returning another Int. The parentheses in the definition of
twice indicate grouping, not application. In Haskell, applying a function to some
argument is simple: stick them together with a space in between. In this case, we
need to group the inner (f x) so the outer f is applied to it as single argument.
Without these parentheses, Haskell would think we were applying f to two argu-
ments: another f and x.

You also saw an example of partial application. The expression add 2 returns a
new function that itself takes the argument we left off. Let’s break down that last
expression to see how it works:

-- Add takes two Ints and returns an Int

add :: Int -> Int -> Int

add x y = x + y

-- Supplying only the first argument gives us a new function that will add 2 to

-- its argument. Its type is Int -> Int

add 2 :: Int -> Int

-- Which is exactly the type of twice's first argument

twice :: (Int -> Int) -> Int -> Int

twice f x = f (f x)

twice (add 2) 3

-- => add 2 (add 2 3)

-- => add 2 5

-- => 7

It’s OK if this doesn’t make complete sense now. I’ll talk more about partial appli-
cation as we go.

CHAPTER 1. HASKELL BASICS 4

Operators

In the definition of add, I used something called an operator: (+). Operators like
this are not in anyway special or built-in; we can define and use them like any other
function. That said, operators have three additional (and convenient) behaviors:

1. They are used infix by default, meaning they appear between their argu-
ments (i.e. 2 + 2, not + 2 2). To use an operator prefix, it must be sur-
rounded in parentheses (as in (+) 2 2).

2. When defining an operator, we can assign custom associativity and prece-
dence relative to other operators. This tells Haskell how to group expres-
sions like 2 + 3 * 5 / 10.

3. We can surround an operator and either of its arguments in parentheses to
get a new function that acceptswhichever argumentwe left off. Expressions
like (+ 2) and (10 /) are examples. The former adds 2 to something and
the latter divides 10 by something. Expressions like these are called sections.

In Haskell, any function with a name made up entirely of punctuation (where The
Haskell Report states very precisely what “punctuation”means) behaves like an op-
erator. We can also take any normally named function and treat it like an operator
by surrounding it in backticks:

-- Normal usage of an elem function for checking if a value is present in a list

elem 3 [1, 2, 3, 4, 5]

-- => True

-- Reads a little better infix

3 `elem` [1, 2, 3, 4, 5]

-- => True

-- Or as a section, leaving out the first argument

intersects xs ys = any (`elem` xs) ys

Lambdas

The last thing we need to know about functions is that they can be anonymous.
Anonymous functions are called lambdas and are most frequently used as argu-

http://en.wikipedia.org/wiki/Associative_property
http://en.wikipedia.org/wiki/Order_of_operations
http://en.wikipedia.org/wiki/Order_of_operations
https://www.haskell.org/onlinereport/haskell2010/haskellch2.html#x7-160002.2
https://www.haskell.org/onlinereport/haskell2010/haskellch2.html#x7-160002.2

CHAPTER 1. HASKELL BASICS 5

ments to higher-order functions. Often these functional arguments exist for only
a single use and giving them a name is not otherwise valuable.

The syntax is a back-slash, followed by the arguments to the function, an arrow,
and finally the body of the function. A back-slash is used because it looks similar
to the Greek letter λ.

Here’s an example:

twice (\x -> x * x + 10) 5

-- => 1235

If you come across a code example using a lambda, you can always rewrite it to
use named functions. Here’s the process for this example:

-- Grab the lambda

\x -> x * x + 10

-- Name it

f = \x -> x * x + 10

-- Replace "\... ->" with normal arguments

f x = x * x + 10

-- Use the name instead

twice f 5

Our Own Data Types

We’re not limited to basic types like Int or String. As you might expect, Haskell
allows you to define custom data types:

data Person = MakePerson String Int

-- | |

-- | ` The persons's age

-- |

-- ` The person's name

CHAPTER 1. HASKELL BASICS 6

To the left of the = is the type constructor and to the right can be one or more data
constructors. The type constructor is the name of the type, which is used in type
signatures. The data constructors are functions that produce values of the given
type. For example, MakePerson is a function that takes a String and an Int, and
returns a Person. Note that I will often use the general term “constructor” to refer
to a data constructor if the meaning is clear from the context.

Whenworkingwith only one data constructor, it’s quite common to give it the same
name as the type constructor. This is because it’s syntactically impossible to use
one in place of the other, so the compiler makes no restriction. Naming is hard.
So when you have a good name, you might as well use it in both contexts.

data Person = Person String Int

-- | |

-- | ` Data constructor

-- |

-- ` Type constructor

Once we have declared the data type, we can now use it to write functions that
construct values of this type:

pat :: Person

pat = Person "Pat" 29

Pattern Matching

To get the individual parts back out again, we use pattern matching:

getName :: Person -> String

getName (Person name _) = name

getAge :: Person -> Int

getAge (Person _ age) = age

In the definitions above, each function is looking for values constructed with
Person. If it gets an argument that matches (which is guaranteed since that’s

https://www.haskell.org/tutorial/patterns.html

CHAPTER 1. HASKELL BASICS 7

the only way to get a Person in our system so far), Haskell will use that function
body with each part of the constructed value bound to the variables given. The
_ pattern (called a wildcard) is used for any parts we don’t care about. Again,
this is using = for equivalence (as always). We’re saying that getName, when given
(Person name _), is equivalent to name. It works similarly for getAge.

Haskell offers other ways to do this sort of thing, but we won’t get into those here.

Sum Types

As mentioned earlier, types can have more than one data constructor. These are
called sum types because the total number of values you can build of a sum type is
the sum of the number of values you can build with each of its constructors. The
syntax is to separate each constructor by a | symbol:

data Person = PersonWithAge String Int | PersonWithoutAge String

pat :: Person

pat = PersonWithAge "Pat" 29

jim :: Person

jim = PersonWithoutAge "Jim"

Notice that pat and jim are both values of type Person, but they’ve been con-
structed differently. We can use pattern matching to inspect how a value was
constructed and accordingly choose what to do. Syntactically, this is accomplished
by providing multiple definitions of the same function, each matching a different
pattern. Each definition will be tried in the order defined, and the first function to
match will be used.

This works well for pulling the name out of a value of our new Person type:

getName :: Person -> String

getName (PersonWithAge name _) = name

getName (PersonWithoutAge name) = name

But we must be careful when trying to pull out a person’s age:

http://en.wikibooks.org/wiki/Haskell/More_on_datatypes#Named_Fields_.28Record_Syntax.29
http://www.haskellforall.com/2012/01/haskell-for-mainstream-programmers_28.html

CHAPTER 1. HASKELL BASICS 8

getAge :: Person -> Int

getAge (PersonWithAge _ age) = age

getAge (PersonWithoutAge _) = -- uh-oh

If we decide to be lazy and not define that second function body, Haskell will com-
pile, but warn us about a non-exhaustive patternmatch. What we’ve created at that
point is a partial function. If such a program ever attempts to match getAge with a
Person that has no age, we’ll see one of the few runtime errors possible in Haskell.

A person’s name is always there, but their age may or may not be. Defining two
constructors makes both cases explicit and forces anyone attempting to access a
person’s age to deal with its potential non-presence.

Kinds and Parameters

Imagine we wanted to generalize this Person type. What if people were able to
hold arbitrary things? What if what that thing is (its type) doesn’t really matter, if
the only meaningful thing we can say about it is if it’s there or not? What we had
before was a person with an age or a person without an age. What we want now is
a person with a thing or a person without a thing.

One way to do this is to parameterize the type:

data Person a = PersonWithThing String a | PersonWithoutThing String

-- | |

-- | ` we can use it as an argument here

-- |

-- ` By adding a "type variable" here

The type we’ve defined here is Person a. We can construct values of type
Person a by giving a String and an a to PersonWithThing, or by giving only a
String to PersonWithoutThing. Notice that even if we build our person using
PersonWithoutThing, the constructed value still has type Person a.

The a is called a type variable. Any lowercase value will do, but it’s common to use
a because it’s short, and a value of type a can be thought of as a value of any type.

CHAPTER 1. HASKELL BASICS 9

Rather than hard-coding that a person has an Int representing their age (or not),
we can say a person is holding some thing of type a (or not).

We can still construct people with and without ages, but now we have to specify in
the type that in this case the a is an Int:

patWithAge :: Person Int

patWithAge = PersonWithThing "pat" 29

patWithoutAge :: Person Int

patWithoutAge = PersonWithoutThing "pat"

Notice how even in the case where I have no age, we still specify the type of that
thing that I do not have. In this case, we specified an Int for patWithoutAge, but
values can have (or not have) any type of thing:

patWithEmail :: Person String

patWithEmail = PersonWithThing "pat" "pat@thoughtbot.com"

patWithoutEmail:: Person String

patWithoutEmail = PersonWithoutThing "pat"

We don’t have to give a concrete a when it doesn’t matter. patWithoutAge and
patWithoutEmail are the same value with different types. We could define a sin-
gle value with the generic type Person a:

patWithoutThing :: Person a

patWithoutThing = PersonWithoutThing "pat"

Because a is more general than Int or String, a value such as this can stand in
anywhere a Person Int or Person String is needed:

patWithoutAge :: Person Int

patWithoutAge = patWithoutThing

patWithoutEmail :: Person String

patWithoutEmail = patWithoutThing

CHAPTER 1. HASKELL BASICS 10

Similarly, functions that operate on people can choose whether they care about
what the person’s holding–or not. For example, getting someone’s name shouldn’t
be affected by whether they hold something, so we can leave it unspecified:

getName :: Person a -> String

getName (PersonWithThing name _) = name

getName (PersonWithoutThing name) = name

getName patWithAge

-- => "pat"

getName patWithoutEmail

-- => "pat"

But a function that does care must specify both the type and account for the case
of non-presence:

doubleAge :: Person Int -> Int

doubleAge (PersonWithThing _ age) = 2 * age

doubleAge (PersonWithoutThing _) = 1

doubleAge patWithAge

-- => 58

doubleAge patWithoutAge

-- => 1

doubleAge patWithoutThing

-- => 1

doubleAge patWithoutEmail

-- => Type error! Person String != Person Int

In this example, doubleAge had to account for people that had no age. The solution
it chose was a poor one: return the doubled age or 1. A better choice is to not
return an Int; instead, return some type capable of holding both the doubled age
and the fact that we might not have had an age to double in the first place. What
we need is Maybe.

CHAPTER 1. HASKELL BASICS 11

Maybe

Haskell’s Maybe type is very similar to our Person example:

data Maybe a = Nothing | Just a

The difference is that we’re not dragging along a name this time. This type is only
concerned with representing a value (of any type) that is either present or not.

We can use this to take functions that otherwise would be partial and make them
total:

-- | Find the first element from the list for which the predicate function

-- returns True. Return Nothing if there is no such element.

find :: (a -> Bool) -> [a] -> Maybe a

find _ [] = Nothing

find predicate (first:rest) =

if predicate first

then Just first

else find predicate rest

This function has two definitions matching two different patterns: if given the
empty list, we immediately return Nothing. Otherwise, the (non-empty) list is de-
constructed into its first element and the rest of the list by matching on the (:)

(pronounced cons) constructor. Thenwe test whether applying the predicate func-
tion to first returns True. If it does, we return Just that. Otherwise, we recurse
and try to find the element in the rest of the list.

Returning a Maybe value forces all callers of find to deal with the potential Nothing
case:

--

-- Warning: this is a type error, not working code!

--

findUser :: UserId -> User

findUser uid = find (matchesId uid) allUsers

CHAPTER 1. HASKELL BASICS 12

This is a type error since the expression actually returns a Maybe User. Instead, we
have to take that Maybe User and inspect it to see if something’s there or not. We
can do this via case, which also supports pattern matching:

findUser :: UserId -> User

findUser uid =

case find (matchesId uid) allUsers of

Just u -> u

Nothing -> -- what to do? error?

Depending on your domain and the likelihood of Maybe values, you might find
this sort of “stair-casing” propagating throughout your system. This can lead to
the thought that Maybe isn’t really all that valuable over some null value built into
the language. If you need these case expressions peppered throughout the code
base, how is that better than the analogous “nil checks”?

Don’t Give Up

The above might leave you feeling underwhelmed. That code doesn’t look all that
better than the equivalent Ruby:

def find_user(uid)

if user = all_users.detect? { |u| u.matches_id?(uid) }

user

else

what to do? error?

end

end

First of all, theHaskell version is type safe: findUsermust always return a User since
that’s the type we’ve specified. I’d put money on most Ruby developers returning
nil from the else branch. The Haskell type system won’t allow that and that’s
a good thing. Otherwise, we have these values floating throughout our system
that we assume are there and in fact are not. I understand that without spending
time programming in Haskell, it’s hard to see the benefits of ruthless type safety

CHAPTER 1. HASKELL BASICS 13

employed at every turn. I assure you it’s a coding experience like no other, but I’m
not here to convince you of that – at least not directly.

The bottom line is that an experienced Haskeller would not write this code this
way. case is a code smell when it comes to Maybe. Almost all code using Maybe can
be improved from a tedious case evaluation using one of the three abstractions
we’ll explore in this book.

Let’s get started.

Functor

In the last chapter, we defined a type that allows any value of type a to carry with
it additional information about whether it’s actually there or not:

data Maybe a = Nothing | Just a

actuallyFive :: Maybe Int

actuallyFive = Just 5

notReallyFive :: Maybe Int

notReallyFive = Nothing

As you can see, attempting to get at the value inside is dangerous:

getValue :: Maybe a -> a

getValue (Just x) = x

getValue Nothing = error "uh-oh"

getValue actuallyFive

-- => 5

getValue notReallyFive

-- => Runtime error!

At first, this seems severely limiting: how can we use something if we can’t (safely)
get at the value inside?

14

CHAPTER 2. FUNCTOR 15

Choices

When confronted with some Maybe a, and you want to do something with an a, you
have three choices:

1. Use the value if you can, otherwise throw an exception
2. Use the value if you can, but still have some way of returning a valid result

if the value’s not there
3. Pass the buck and return a Maybe result yourself

The first option is a non-starter. As you saw, it is possible to throw runtime excep-
tions in Haskell via the error function, but you should avoid this at all costs. We’re
trying to eliminate runtime exceptions, not add them.

The second option is possible only in certain scenarios. You need to have some
way to handle an incoming Nothing. That may mean skipping certain aspects of
your computation or substituting another appropriate value. Usually, if you’re
given a completely abstract Maybe a, it’s not possible to determine a substitute be-
cause you can’t produce a value of type a out of nowhere.

Even if you did know the type (say you were given a Maybe Int) it would be unfair to
your callers if you defined the safe substitute yourself. In one case 0might be best
because we’re going to add something, but in another 1 would be better because
weplan tomultiply. It’s best to let themhandle it themselves using a utility function
like fromMaybe:

fromMaybe :: a -> Maybe a -> a

fromMaybe x Nothing = x

fromMaybe _ (Just x) = x

fromMaybe 10 actuallyFive

-- => 5

fromMaybe 10 notReallyFive

-- => 10

Option 3 is actually a variation on option 2. By making your own result a Maybe you
always have the ability to return Nothing yourself if the value isn’t present. If the

CHAPTER 2. FUNCTOR 16

value is present, you can perform whatever computation you need to and wrap
what would be your normal result in Just.

The main downside is that now your callers also have to consider how to deal
with the Maybe. Given the same situation, they should again make the same choice
(option 3), but that only pushes the problem up to their callers–which means any
Maybe values tend to go viral.

Eventually, probably at some UI boundary, someone will need to “deal with” the
Maybe, either by providing a substitute or skipping some action that might other-
wise take place. This should happen only once, at that boundary. Every function
between the source and the final use should pass along the value’s potential non-
presence unchanged.

Even though it’s safest for every function in our system to pass along a Maybe value,
it would be extremely annoying to force them all to actually take and return Maybe

values. Each function separately checking whether it should go ahead and per-
form its computations will become repetitive and tedious. Instead, we can com-
pletely abstract this “pass along the Maybe” concern using higher-order functions
and something called functors.

Discovering a Functor

Imagine we had a higher-order function called whenJust:

whenJust :: (a -> b) -> Maybe a -> Maybe b

whenJust f (Just x) = Just (f x)

whenJust _ Nothing = Nothing

It takes a function from a to b and a Maybe a. If the value’s there, it applies the
function and wraps the result in Just. If the value’s not there, it returns Nothing.
Note that it constructs a new value using the Nothing constructor. This is important
because the value we’re given is type Maybe a and we must return type Maybe b.

This allows the internals of our system to be made of functions (e.g. the f given
to whenJust) that take and return normal, non-Maybe values, but still “pass along
the Maybe” whenever we need to take a value from some source that may fail and
manipulate that value in some way. If it’s there, we go ahead and manipulate it,
but return the result as a Maybe as well. If it’s not, we return Nothing directly.

CHAPTER 2. FUNCTOR 17

whenJust (+5) actuallyFive

-- => Just 10

whenJust (+5) notReallyFive

-- => Nothing

This function exists in Haskell’s Prelude1 as fmap in the Functor type class.

About Type Classes

Haskell has a concept called type classes. These are not at all related to the classes
used in Object-oriented programming. Instead, Haskell uses type classes for func-
tions that may be implemented in different ways for different data types. These
are more like the interfaces and protocols you may find in other languages. For ex-
ample, we can add or negate various kinds of numbers: integers, floating points,
rational numbers, etc. To accommodate this, Haskell has a Num type class that
includes functions like (+) and negate. Each concrete type (Int, Float, etc) then
defines its own version of the required functions.

Type classes are definedwith the class keyword and a where clause listing the types
of anymember functions:

class Num a where

(+) :: a -> a -> a

negate :: a -> a

Being an instance of a type class requires that you implement any member func-
tions with the correct type signatures. To make Int an instance of Num, someone
defined the (+) and negate functions for it. This is done with the instance keyword
and a where clause that implements the functions from the class declaration:

instance Num Int where

x + y = addInt x y

negate x = negateInt x

1The module of functions available without importing anything.

http://hackage.haskell.org/package/base-4.7.0.1/docs/Prelude.html#t:Num

CHAPTER 2. FUNCTOR 18

Usually, but not always, laws are associated with these functions that your im-
plementations must satisfy. Type class laws are important for ensuring that type
classes are useful. They allow us as developers to reason about what will happen
when we use type class functions without having to understand all of the concrete
types for which they are defined. For example, if you negate a number twice, you
should get back to the same number. This can be stated formally as:

negate (negate x) == x -- for any x

Knowing that this law holds gives us a precise understanding of what will happen
when we use negate. Because of the laws, we get this understanding without hav-
ing to knowhow negate is implemented for various types. This is a simple example,
but we’ll see more interesting laws with the Functor type class.

Functor

Haskell defines the type class Functor with a single member function, fmap:

class Functor f where

fmap :: (a -> b) -> f a -> f b

Type constructors, like Maybe, implement fmap by defining a function where that f
is replaced by themselves. We can see that whenJust has the correct type:

-- (a -> b) -> f a -> f b

whenJust :: (a -> b) -> Maybe a -> Maybe b

Therefore, we could implement a Functor instance for Maybe with the following
code:

instance Functor Maybe where

fmap = whenJust

In reality, there is no whenJust function; fmap is implemented directly:

CHAPTER 2. FUNCTOR 19

instance Functor Maybe where

fmap f (Just x) = Just (f x)

fmap _ Nothing = Nothing

This definition is exactly like the one we saw earlier for whenJust. The only differ-
ence is we’re now implementing it as part of the Functor instance declaration for
Maybe. For the rest of this book, I’ll be omitting the class and instance syntax. In-
stead, I’ll state in prose when a function is part of some type class but show its type
and definition as if it was a normal, top-level function.

The Functor Laws

As mentioned, type class laws are a formal way of defining what it means for im-
plementations to be “well-behaved.” If someone writes a library function and says
it can work with “any Functor”, that code can rely both on that type having an fmap

implementation, and on its operating in accordance with these laws.

The first Functor law

The first Functor law states:

fmap id x == id x

--

-- for any value x, of type f a (e.g. Maybe a)

--

Where id is the identity function, one which returns whatever you give it:

id :: a -> a

id x = x

Since pure functions always give the same result when given the same input, it’s
equally correct to say the functions themselves must be equivalent, rather than
applying them to “any x” and saying the resultsmust be equivalent. For this reason,
the laws are usually stated as:

CHAPTER 2. FUNCTOR 20

fmap id == id

This law says that if we call fmap id, the function we get back should be equivalent
to id itself. This is what “well-behaved” means in this context. If you’re familiar
with the common map function on lists, you would expect that applying id to every
element in a list (as map id does) gives you back the exact same list. That is exactly
what you expect to get if you apply id directly to the list itself. That map function is
actually fmap specialized to the [] type. Hence, that behavior follows from the first
law.

Let’s go through the same thought exercise for Maybe so you can see that this
law holds for its implementation as well. We’ll use our two example values
actuallyFive and notReallyFive from earlier:

actuallyFive :: Maybe Int

actuallyFive = Just 5

notReallyFive :: Maybe Int

notReallyFive = Nothing

What do we get by applying the identity function to each of these?

id actuallyFive

-- => Just 5

id notReallyFive

-- => Nothing

Not too surprising. Now let’s look at fmap id:

fmap id actuallyFive

Remember the definition of fmap for Maybe values:

fmap :: (a -> b) -> Maybe a -> Maybe b

fmap f (Just x) = Just (f x)

fmap _ Nothing = Nothing

CHAPTER 2. FUNCTOR 21

Since actuallyFivematches the Just case, fmap will apply id to 5, then re-wrap the
result in Just:

fmap id actuallyFive

-- => fmap id (Just 5) = Just (id 5)

-- => = Just 5

And for notReallyFive?

fmap id notReallyFive

Since notReallyFive is Nothing, fmap will return a new Nothing:

fmap id notReallyFive

-- => fmap _ Nothing = Nothing

-- => = Nothing

As expected, both results are the same as applying id directly.

The second Functor law

The second law has to do with order of operations. It states:

fmap (f . g) == fmap f . fmap g

Where (.) is a function that takes two functions and composes them together:

(.) :: (b -> c) -> (a -> b) -> a -> c

(f . g) x = f (g x)

What this law says is that if we compose two functions together, then fmap the
resulting function, we should get a function that behaves the same as when we
fmap each function individually, then compose the two results. Let’s prove again
that this law holds for Maybe by walking through an example with actuallyFive and
notReallyFive.

First, let’s define two concrete functions, f and g

CHAPTER 2. FUNCTOR 22

f :: Int -> Int

f = (+2)

g :: Int -> Int

g = (*3)

We can compose these two functions to get a new function, and call that h:

h :: Int -> Int

h = f . g

Given the definition of (.), this is equivalent to:

h :: Int -> Int

h x = f (g x)

This new function takes a number and gives it to (*3), then it takes the result and
gives it to (+2):

h 5

-- => 17

We can give this function to fmap to get one that works with Maybe values:

fmap h actuallyFive

-- => Just 17

fmap h notReallyFive

-- => Nothing

Similarly, we can give each of f and g to fmap separately to produce functions that
can add 2 or multiply 3 to a Maybe Int and produce another Maybe Int. The result-
ing functions can also be composed with (.) to produce a new function, fh:

fh :: Maybe Int -> Maybe Int

fh = fmap f . fmap g

CHAPTER 2. FUNCTOR 23

Again, given the definition of (.), this is equivalent to:

fh :: Maybe Int -> Maybe Int

fh x = fmap f (fmap g x)

This function will call fmap g on its argument, which will multiply by 3 if the num-
ber’s there or return Nothing if it’s not. Then it will give that result to fmap f, which
will add 2 if the number’s there, or return Nothing if it’s not:

fh actuallyFive

-- => Just 17

fh notReallyFive

-- => Nothing

You should convince yourself that fh and fmap h behave in exactly the same way.
The second functor law states that this must be the case if your type is to be a valid
Functor.

Because Haskell is referentially transparent, we can freely replace functions with
their implementations. It may require some explicit parentheses here and there,
but the code will always give the same answer. Doing so brings us back directly to
the statement of the second law:

(fmap f . fmap g) actuallyFive

-- => Just 17

fmap (f . g) actuallyFive

-- => Just 17

(fmap f . fmap g) notReallyFive

-- => Nothing

fmap (f . g) notReallyFive

-- => Nothing

-- Therefore:

fmap (f . g) == fmap f . fmap g

CHAPTER 2. FUNCTOR 24

Not only can we take normal functions (those that operate on fully present values)
and give them to fmap to get functions that can operate on Maybe values, but this
law states we can do so in any order. We can compose our system of functions
together then give that to fmap or we can fmap individual functions and compose
those together. Either way, we’re guaranteed to get the same result. We can rely
on this fact whenever we use fmap for any type that’s in the Functor type class.

Why Is This Useful?

OK, enough theory. Now that we know how it works, let’s see how it’s used. Say
we have a lookup function to get from a UserId to the User for that id. Since the
user may not exist, it returns a Maybe User:

findUser :: UserId -> Maybe User

findUser = undefined

I’ve left the implementation of findUser as undefined because this doesn’t matter
for our example. I’ll do this frequently throughout the book. undefined is a func-
tion with type a. That allows it to stand in for any expression. If your program
ever tries to evaluate it, it will raise an exception. Still, it can be extremely useful
while developing because we can build our program incrementally, but have the
compiler check our types as we go.

Next, imagine we want to display a user’s name in all capitals:

userUpperName :: User -> String

userUpperName u = map toUpper (userName u)

The logic of getting from a User to that capitalized String is not terribly complex,
but it could be. Imagine something like getting from a User to that user’s yearly
spending on products valued over $1,000. In our case the transformation is only
one function, but realistically it could be a whole suite of functions wired together.
Ideally, none of these functions should have to think about potential non-presence
or contain any “nil-checks,” as that’s not their purpose; they should all be written
to work on values that are fully present.

CHAPTER 2. FUNCTOR 25

Given userUpperName, which works only on present values, we can use fmap to apply
it to a value thatmay not be present to get back the result we expect with the same
level of present-ness:

maybeName :: Maybe String

maybeName = fmap userUpperName (findUser someId)

We can do this repeatedly with every function in our system that’s required to get
from findUser to the eventual display of this name. Because of the second functor
law, we know that if we compose all of these functions together then fmap the
result, or if we fmap any individual functions and compose the results, we’ll always
get the same answer. We’re free to design our system as we see fit, but still pass
along the Maybes everywhere we need to.

If we were doing this in the context of a web application, this maybe-name might
end up being interpolated into some HTML. It’s at this boundary that we’ll have to
“deal with” the Maybe value. One option is to use the fromMaybe function to specify
a default value:

template :: Maybe String -> String

template mname = "" ++ name ++ ""

where

name = fromMaybe "(no name given)" mname

Curried Form

Before moving on, I need to pause briefly and answer a question I dodged in the
Haskell Basics chapter. Youmay have wonderedwhy Haskell type signatures don’t
separate a function’s argument types from its return type. The direct answer is
that all functions in Haskell are in curried form. This is an idea developed by and
named for the same logician as Haskell itself.

A curried function is one that conceptually accepts multiple arguments by actually
accepting only one, but returning a function. The returned function itself will
also be curried and use the same process to accept more arguments. This

http://en.wikipedia.org/wiki/Haskell_Curry

CHAPTER 2. FUNCTOR 26

process continues for as many arguments as are needed. In short, all functions
in Haskell are of the form (a -> b). A (conceptually) multi-argument function
like add :: Int -> Int -> Int is really add :: Int -> (Int -> Int); this matches
(a -> b) by taking a as Int and b as (Int -> Int).

The reason I didn’t talk about this earlier is that we can mostly ignore it when writ-
ing Haskell code. We define and apply functions as if they actually accept multiple
arguments and things work as we intuitively expect. Even partial application (a
topic I hand-waved a bit at the time) can be used effectively without realizing this is
a direct result of curried functions. It’s whenwe dive into concepts like Applicative

(the focus of the next chapter) that we need to understand a bit more about what’s
going on under the hood.

The Case for Currying

In the implementation of purely functional programming languages, there is value
in having all functions taking exactly one argument and returning exactly one re-
sult. Haskell is written this way, so users have two choices for defining “multi-
argument” functions.

We could rely solely on tuples:

add :: (Int, Int) -> Int

add (x, y) = x + y

This results in the sort of type signatures you might expect, where the argument
types are shown separate from the return types. The problem with this form is
that partial application can be cumbersome. How do you add 5 to every element
in a list?

f :: [Int]

f = map add5 [1,2,3]

where

add5 :: Int -> Int

add5 y = add (5, y)

Alternatively, we could write all functions in curried form:

CHAPTER 2. FUNCTOR 27

--

-- / One argument type, an Int

-- |

-- | / One return type, a function from Int to Int

-- | |

add :: Int -> (Int -> Int)

add x = \y -> x + y

-- | |

-- | ` One body expression, a lambda from Int to Int

-- |

-- ` One argument variable, an Int

--

This makes partial application simpler. Since add 5 is a valid expression and is of
the correct type to pass to map, we can use it directly:

f :: [Int]

f = map (add 5) [1,2,3]

While both forms are valid Haskell (in fact, the curry and uncurry functions in the
Prelude convert functions between the two forms), the curried version was cho-
sen as the default and so Haskell’s syntax allows some things that make it more
convenient.

For example, we can name function arguments in whatever way we like; we don’t
have to always assign a single lambda expression as the function body. In fact,
these are all equivalent:

add = \x -> \y -> x + y

add x = \y -> x + y

add x y = x + y

In type signatures, (->) is right-associative. This means that instead of writing:

addThree :: Int -> (Int -> (Int -> Int))

addThree x y z = x + y + z

CHAPTER 2. FUNCTOR 28

We can write the less-noisy:

addThree :: Int -> Int -> Int -> Int

addThree x y z = x + y + z

And it has the same meaning.

Similarly, function application is left-associative. This means that instead of writ-
ing:

six :: Int

six = ((addThree 1) 2) 3

We can write the less-noisy:

six :: Int

six = addThree 1 2 3

And it has the same meaning as well.

These conveniences are why we don’t actively picture functions as curried
when writing Haskell code. We can define addThree naturally, as if it took three
arguments, and let the rules of the language handle currying. We can also
apply addThree naturally, as if it took three arguments and again the rules of the
language will handle the currying.

Partial Application

Some languages don’t use curried functions but do support partial application:
supplying only some of a function’s arguments to get back another function that
accepts the arguments that were left out. We can do this in Haskell too, but it’s not
“partial” at all, since all functions truly accept only a single argument.

When we wrote the following expression:

maybeName = fmap userUpperName (findUser someId)

CHAPTER 2. FUNCTOR 29

What really happened is that fmap was first applied to the function userUpperName

to return a new function of type Maybe User -> Maybe String.

fmap :: (a -> b) -> Maybe a -> Maybe b

userUpperName :: (User -> String)

fmap userUpperName :: Maybe User -> Maybe String

This function is then immediately applied to (findUser someId) to ultimately get
that Maybe String. This example shows that Haskell’s curried functions blur the
line between partial and total application. The result is a natural and consistent
syntax for doing either.

Recap

So far, we’ve seen an introduction to Haskell functions and to Haskell’s type sys-
tem. We then introduced the Maybe type as a new and powerful way to use that
type system to describe something about your domain–that some values may not
be present–and a type class (Functor) that allows for strict separation between
value-handling functions and the need to apply them to values that may not be
present.

We then saw some real-world code that takes advantage of these ideas and dis-
cussed type class laws as a means of abstraction and encapsulation. These laws
give us a precise understanding of how our code will behave without having to
know its internals. Finally, we took a brief detour into the world of currying, a
foundational concept responsible for many of the things we’ll explore next.

In the next chapter, we’ll talk about applicative functors. If we think of a functor
as a value in some context, supporting an fmap operation for applying a function
to that value while preserving its context, applicative functors are functors where
the value itself can be applied. In simple terms: it’s a function. These structures
must then support another operation for applying that function from within its
context. That operation, combined with currying, will grant us more power and
convenience when working with Maybe values.

Applicative

In the last section we saw how to use fmap to take a system full of functions that
operate on fully present values, free of any nil-checks, and employ them to safely
manipulate values that may in fact not be present. This immediately makes many
uses of Maybe more convenient, while still being explicit and safe in the face of
failure and partial functions.

There’s another notable case where Maybe can cause inconvenience, one that can’t
be solved by fmap alone. Imagine we’re writing some code using a web framework.
It provides a function getParam that takes the name of a query parameter (passed
as part of the URL in a GET HTTP request) and returns the value for that parameter
as parsed out of the current URL. Since the parameter you name could be missing
or invalid, this function returns Maybe:

getParam :: String -> Params -> Maybe String

getParam = undefined

Let’s say we also have a User data type in our system. Users are constructed from
their name and email address, both Strings.

data User = User String String

How do we build a User from query params representing their name and email?

The most direct way is the following:

30

CHAPTER 3. APPLICATIVE 31

userFromParams :: Params -> Maybe User

userFromParams params =

case getParam "name" params of

Just name -> case getParam "email" params of

Just email -> Just (User name email)

Nothing -> Nothing

Nothing -> Nothing

Maybe is notmaking our lives easier here. Yes, type safety is a huge implicit win, but
this still looks a lot like the tedious, defensive coding you’d find in any language:

def user_from_params(params)

if name = get_param "name" params

if email = get_param "email" params

User.new(name, email)

end

end

end

Hiding Details

So how do we do this better? What we want is code that looks as if there is no
Maybe involved (because that’s convenient) but correctly accounts for Maybe at every
step along the way (because that’s safe). If no Maybes were involved, and we were
constructing a normal User value, the code might look like this:

userFromValues :: User

userFromValues = User aName anEmail

An ideal syntax would look very similar, perhaps something like this:

userFromMaybeValues :: Maybe User

userFromMaybeValues = User <$> aMaybeName <*> aMaybeEmail

The Applicative type class and its Maybe instance allow us towrite exactly this code.
Let’s see how.

CHAPTER 3. APPLICATIVE 32

Follow The Types

We can start by trying to do what we want with the only tool we have so far: fmap.

What happens when we apply fmap to User? It’s not immediately clear be-
cause User has the type String -> String -> User which doesn’t line up with
(a -> b). Fortunately, it only appears not to line up. Remember, every function
in Haskell takes one argument and returns one result: User’s actual type is
String -> (String -> User). In other words, it takes a String and returns a
function, (String -> User). In this light, it indeed lines up with the type (a -> b)

by taking a as String and b as (String -> User).

By substituting our types for f, a, and b, we can see what the type of fmap User is:

fmap :: (a -> b) -> f a -> f b

-- a -> b

User :: String -> (String -> User)

-- f a -> f b

fmap User :: Maybe String -> Maybe (String -> User)

Sonowwehave a function that takes a Maybe String and returns a Maybe (String -> User).
We also have a value of type Maybe String that we can give to this function,
getParam "name" params:

getParam "name" params :: Maybe String

fmap User :: Maybe String -> Maybe (String -> User)

fmap User (getParam "name" params) :: Maybe (String -> User)

The Control.Applicative module exports an operator synonym for fmap called
(<$>) (I pronounce this as fmap because that’s what it’s a synonym for). The
reason this synonym exists is to get us closer to our original goal of making
expressions look as if there are no Maybes involved. Since operators are placed
between their arguments, we can use (<$>) to rewrite our expression above to
an equivalent one with less noise:

CHAPTER 3. APPLICATIVE 33

User <$> getParam "name" params :: Maybe (String -> User)

This expression represents a “Maybe function”. We’re accustomed to values in a con-
text: a Maybe Int, Maybe String, etc; and we saw how these were functors. In this
case, we have a function in a context: a Maybe (String -> User). Since functions
are things that can be applied, these are called applicative functors.

By using fmap, we reduced our problem space and isolated the functionality we’re
lacking, functionality we’ll ultimately get from Applicative:

We have this:

fmapUser :: Maybe (String -> User)

fmapUser = User <$> getParam "name" params

And we have this:

aMaybeEmail :: Maybe String

aMaybeEmail = getParam "email" params

And we’re trying to ultimately get to this:

userFromParams :: Params -> Maybe User

userFromParams params = fmapUser <*> aMaybeEmail

Weonly have to figure outwhat that (<*>) should do. At this point, wehave enough
things defined that we know exactly what its type needs to be. In the next section,
we’ll see how its type pushes us to the correct implementation.

Apply

The (<*>) operator is pronounced apply. Specialized to Maybe, its job is to apply a
Maybe function to a Maybe value to produce a Maybe result.

In our example, we have fmapUser of type Maybe (String -> User) and aMaybeEmail

of type Maybe String. We’re trying to use (<*>) to put those together and get a
Maybe User. We can write that down as a type signature:

CHAPTER 3. APPLICATIVE 34

(<*>) :: Maybe (String -> User) -> Maybe String -> Maybe User

With such a specific type, this function won’t be very useful, so let’s generalize it
away from Strings and Users:

(<*>) :: Maybe (a -> b) -> Maybe a -> Maybe b

This function is part of the Applicative type class, meaning it will be defined for
many types. Therefore, its actual type signature is:

(<*>) :: f (a -> b) -> f a -> f b

Where f is any type that has an Applicative instance (such as Maybe).

It’s important tomention this because it is the type signature you’re going to see in
any documentation about Applicative. Now that I’ve done so, I’m going to go back
to type signatures using Maybe since that’s the specific instance we’re discussing
here.

The semantics of our (<*>) function are as follows:

• If both the Maybe function and the Maybe value are present, apply the function
to the value and return the result wrapped in Just

• Otherwise, return Nothing

We can translate that directly into code via pattern matching:

(<*>) :: Maybe (a -> b) -> Maybe a -> Maybe b

Just f <*> Just x = Just (f x)

_ <*> _ = Nothing

With this definition, and a few line breaks for readability, we arrive at our desired
goal:

userFromParams :: Params -> Maybe User

userFromParams params = User

<$> getParam "name" params

<*> getParam "email" params

CHAPTER 3. APPLICATIVE 35

The result is an elegant expression with minimal noise. Compare that to the stair-
case we started with!

Not only is this expression elegant, it’s also safe. Because of the semantics of fmap
and (<*>), if any of the getParam calls return Nothing, our whole userFromParams

expression results in Nothing. Only if they all return Just values, do we get Just
our user.

As always, Haskell’s being referentially transparent means we can prove this by
substituting the definitions of fmap and (<*>) and tracing how the expression ex-
pands given some example Maybe values.

If the first value is present, but the second is not:

User <$> Just "Pat" <*> Nothing

-- => fmap User (Just "Pat") <*> Nothing (<$> == fmap)

-- => Just (User "Pat") <*> Nothing (fmap definition, first pattern)

-- => Nothing (<*> definition, second pattern)

If the second value is present but the first is not:

User <$> Nothing <*> Just "pat@thoughtbot.com"

-- => fmap User Nothing <*> Just "pat@thoughtbot.com"

-- => Nothing <*> Just "pat@thoughtbot.com" (fmap, second pattern)

-- => Nothing

Finally, if both values are present:

User <$> Just "Pat" <*> Just "pat@thoughtbot.com"

-- => fmap User (Just "Pat") <*> Just "pat@thoughtbot.com"

-- => Just (User "Pat") <*> Just "pat@thoughtbot.com"

-- => Just (User "Pat" "pat@thoughtbot.com") (<*>, first pattern)

Chaining

One of the nice things about this pattern is that it scales up to functions that, con-
ceptually at least, can accept any number of arguments. Imagine that our User

type had a third field representing their age:

CHAPTER 3. APPLICATIVE 36

data User = User String String Int

Since our getParam function can only look up parameters of type String, we’ll also
need a getIntParam function to pull the user’s age out of our Params:

getIntParam :: String -> Params -> Maybe Int

getIntParam = undefined

With these defined, let’s trace through the types of our applicative expression
again. This time, we have to remember that our new User function is of type
String -> (String -> (Int -> User)):

User :: String -> (String -> (Int -> User))

User <$> getParam "name" params :: Maybe (String -> (Int -> User))

User <$> getParam "name" params <*> getParam "email" params :: Maybe (Int -> User)

This time, we arrive at a Maybe (Int -> User). Knowing that getIntParam "age" params

is of type Maybe Int, we’re in the exact same position as last time when we first
discovered a need for (<*>). Being in the same position, we can do the same
thing again:

userFromParams :: Params -> Maybe User

userFromParams params = User

<$> getParam "name" params

<*> getParam "email" params

<*> getIntParam "age" params

As our pure function (User) gains more arguments, we can continue to apply it to
values in context by repeatedly using (<*>). The process by which this happens
may be complicated, but the result is well worth it: an expression that is concise,
readable, and above all safe.

Applicative In the Wild

This pattern is used in a number of places in the Haskell ecosystem.

CHAPTER 3. APPLICATIVE 37

JSON parsing

As one example, the aeson package defines a number of functions for parsing
things out of JSON values. These functions return their results wrapped in a Parser

type. This is very much like Maybe except that it holds a bit more information about
why the computation failed, not only that the computation failed. Not unlike our
getParam, these sub-parsers pull basic types (Int, String, etc.) out of JSON values.
The Applicative instance for the Parser type can then be used to combine them
into something domain-specific, like a User.

Again, imagine we had a rich User data type:

data User = User

String -- Name

String -- Email

Int -- Age

UTCTime -- Date of birth

We can tell aeson how to create a User from JSON, by implementing the parseJSON

function. That takes a JSON object (represented by the Value type) and returns a
Parser User:

parseJSON :: Value -> Parser User

parseJSON (Object o) = User

<$> o .: "name"

<*> o .: "email"

<*> o .: "age"

<*> o .: "birth_date"

-- If we're given some JSON value besides an Object (an Array, a Number, etc) we

-- can signal failure by returning the special value mzero

parseJSON _ = mzero

Each individual o .: "..." expression is a function that attempts to pull the value
for the given key out of a JSON Object. Potential failure (missing key, invalid type,
etc) is captured by returning a value wrapped in the Parser type. We can combine
the individual Parser values together into one Parser User using (<$>) and (<*>).

http://hackage.haskell.org/package/aeson

CHAPTER 3. APPLICATIVE 38

If any key is missing, the whole thing fails. If they’re all there, we get the User we
wanted. This concern is completely isolated within the implementation of (<$>)
and (<*>) for Parser.

Option parsing

Another example is command-line options parsing via the optparse-applicative li-
brary. The process is very similar: the library exposes low-level parsers for prim-
itive types like Flag or Argument. Because this may fail, the values are wrapped in
another Parser type. (Though it behaves similarly, this is this library’s own Parser

type, not the same one as above.) The Applicative instance can again be used to
combine these sub-parsers into a domain-specific Options value:

-- Example program options:

--

-- - A bool to indicate if we should be verbose, and

-- - A list of FilePaths to operate on

--

data Options = Options Bool [FilePath]

parseOptions :: Parser Options

parseOptions = Options

<$> switch (short 'v' <> long "verbose" <> help "be verbose")

<*> many (argument (metavar "FILE" <> help "file to operate on"))

You can ignore some of the functions here, which were included to keep the
example accurate. What’s important is that switch (...) is of type Parser Bool

and many (argument ...) is of type Parser [FilePath]. We use (<$>) and (<*>)

to put these two sub-parsers together with Options and end up with an overall
Parser Options. If we add more options to our program, all we need to do is add
more fields to Options and continue applying sub-parsers with (<*>).

https://github.com/pcapriotti/optparse-applicative

Monad

So far, we’ve seen that as Maybe makes our code safer, it also makes it less con-
venient. By making potential non-presence explicit, we now need to correctly ac-
count for it at every step. We addressed a number of scenarios by using fmap to
“upgrade” a system full of normal functions (free of any nil-checks) into one that
can take and pass along Maybe values. When confronted with a new scenario that
could not be handled by fmap alone, we discovered a new function (<*>) which
helped ease our pain again. This chapter is about addressing a third scenario, one
that fmap and even (<*>) cannot solve: dependent computations.

Let’s throw a monkey wrench into our getParam example from earlier. This time,
let’s say we’re accepting logins by either username or email. The user can say
which method they’re using by passing a type param specifying “username” or
“email”.

Note: this whole thing is wildly insecure, but bear with me.

Again, all of this is fraught with Maybe-ness and again, writing it with straight-line
case matches can get very tedious:

loginUser :: Params -> Maybe User

loginUser params = case getParam "type" of

Just t -> case t of

"username" -> case getParam "username" of

Just u -> findUserByUserName u

Nothing -> Nothing

"email" -> case getParam "email" of

Just e -> findUserByEmail e

39

CHAPTER 4. MONAD 40

Nothing -> Nothing

_ -> Nothing

Nothing -> Nothing

Yikes.

More Power

We can’t clean this up with (<*>) because each individual part of an Applicative

expression doesn’t have access to the results from any other part’s evaluation.
What does that mean? If we look at the Applicative expression from before:

User <$> getParam "name" params <*> getParam "email" params

Here, the two results from getParam "name" and getParam "email" (either of which
could be present or not) are passed together to User. If they’re both present we
get a Just User, otherwise Nothing. Within the getParam "email" expression, you
can’t reference the (potential) result of getParam "name".

We need that ability to solve our current conundrum because we need to check
the value of the “type” param to know what to do next. We need…monads.

And Then?

Let’s start with a minor refactor. We’ll pull out a loginByType function:

loginUser :: Params -> Maybe User

loginUser params = case getParam "type" params of

Just t -> loginByType params t

Nothing -> Nothing

loginByType :: Params -> String -> Maybe User

loginByType params "username" = case getParam "username" params of

Just u -> findUserByUserName u

CHAPTER 4. MONAD 41

Nothing -> Nothing

loginByType params "email" = case getParam "email" params of

Just e -> findUserByEmail e

Nothing -> Nothing

loginByType _ _ = Nothing

Things seem to be following a pattern now: we have some value that might not be
present and some function that needs the (fully present) value, does some other
computation with it, but may itself fail.

Let’s abstract this concern into a new function called andThen:

andThen :: Maybe a -> (a -> Maybe b) -> Maybe b

andThen (Just x) f = f x

andThen _ _ = Nothing

We’ll use the function infix via backticks for readability:

loginUser :: Params -> Maybe User

loginUser params =

getParam "type" params `andThen` loginByType params

loginByType :: Params -> String -> Maybe User

loginByType params "username" =

getParam "username" params `andThen` findUserByUserName

loginByType params "email" =

getParam "email" params `andThen` findUserByEmail

-- Still needed in case we get an invalid type

loginByType _ _ = Nothing

This cleans things up nicely. The concern of “passing along the Maybe” is completely
abstracted away behind andThen and we’re free to describe the nature of our com-
putation. If only Haskell had such a function…

CHAPTER 4. MONAD 42

Bind

If you haven’t guessed it, Haskell does have exactly this function. Its name is bind
and it’s defined as part of the Monad type class. Here is its type signature:

(>>=) :: m a -> (a -> m b) -> m b

--

-- where m is the type you're saying is a Monad (e.g. Maybe)

--

Again, you can see that andThen has the correct signature:

-- m a (a -> m b) -> m b

andThen :: Maybe a -> (a -> Maybe b) -> Maybe b

Chaining

(>>=) is defined as an operator because it’s meant to be used infix. It’s also
given an appropriate fixity so it can be chained together intuitively. This is why I
chose the name andThen for my fictitious version: it can sometimes help to read
x >>= y >>= z as x and-then y and-then z. To see this in action, let’s walk through
another example.

Suppose we are working on a system with the following functions for dealing with
users’ addresses and their zip codes:

-- Returns Maybe because the user may not exist

findUser :: UserId -> Maybe User

findUser = undefined

-- Returns Maybe because Users aren't required to have an address on file

userZip :: User -> Maybe ZipCode

userZip = undefined

Let’s also say we have a function to calculate shipping costs by zip code. It employs
Maybe to handle invalid zip codes:

CHAPTER 4. MONAD 43

shippingCost :: ZipCode -> Maybe Cost

shippingCost = undefined

We could naively calculate the shipping cost for some user given their Id:

findUserShippingCost :: UserId -> Maybe Cost

findUserShippingCost uid =

case findUser uid of

Just u -> case userZip u of

Just z -> case shippingCost z of

Just c -> Just c

-- User has an invalid zip code

Nothing -> Nothing

-- Use has no address

Nothing -> Nothing

-- User not found

Nothing -> Nothing

This code is offensively ugly, but it’s the sort of code I write every day in Ruby. We
might hide it behind three-line methods each holding one level of conditional, but
it’s there.

How does this code look with (>>=)?

findUserShippingCost :: UserId -> Maybe Cost

findUserShippingCost uid = findUser uid >>= userZip >>= shippingCost

You have to admit, that’s quite nice. Hopefully even more so when you look back
at the definition for andThen to see that that’s all it took to clean up this boilerplate.

Do Notation

There’s one more topic I’d like to mention related to monads: do-notation.

CHAPTER 4. MONAD 44

This bit of syntactic sugar is provided by Haskell for any of its Monads. The reason is
to allow functional Haskell code to read like imperative code when building com-
pound expressions using Monad. This is valuable because monadic expressions,
especially those representing interactions with the outside world, are often read
best as a series of imperative steps:

f = do

x <- something

y <- anotherThing

z <- combineThings x y

finalizeThing z

That said, this sugar is available for any Monad and so we can use it for Maybe as
well. We can use Maybe as an example for seeing how do-notation works. Then, if
and when you come across some IO expressions using do-notation, you won’t be
as surprised or confused.

De-sugaring do-notation is a straightforward process followed out during Haskell
compilation. It can be understood best by doing it manually. Let’s start with our
end result from the last example. We’ll translate this code step by step into the
equivalent do-notation form, then follow the same process backward, as the com-
piler would do if we had written it that way in the first place.

findUserShippingCost :: UserId -> Maybe Cost

findUserShippingCost uid = findUser uid >>= userZip >>= shippingCost

First, let’s add some arbitrary line breaks so the eventual formatting aligns with
what someone might write by hand:

findUserShippingCost :: UserId -> Maybe Cost

findUserShippingCost uid =

findUser uid >>=

userZip >>=

shippingCost

CHAPTER 4. MONAD 45

Next, let’s name the arguments to each expression via anonymous functions,
rather than relying on partial application and their curried nature:

findUserShippingCost :: UserId -> Maybe Cost

findUserShippingCost uid =

findUser uid >>= \u ->

userZip u >>= \z ->

shippingCost z

Next, we’ll take each lambda and translate it into a binding, which looks a bit like
variable assignment and uses (<-). You can read x <- y as “x from y”:

findUserShippingCost :: UserId -> Maybe Cost

findUserShippingCost uid =

u <- findUser uid

z <- userZip u

shippingCost z

Finally, we prefix the series of “statements” with do:

findUserShippingCost :: UserId -> Maybe Cost

findUserShippingCost uid = do

u <- findUser uid

z <- userZip u

shippingCost z

Et voilà, you have the equivalent do-notation version of our function. When the
compiler sees code written like this, it follows (mostly) the same process we did,
but in reverse:

Remove the do keyword:

findUserShippingCost :: UserId -> Maybe Cost

findUserShippingCost uid =

CHAPTER 4. MONAD 46

u <- findUser uid

z <- userZip u

shippingCost z

Translate each binding into a version using (>>=) and lambdas:

findUserShippingCost :: UserId -> Maybe Cost

findUserShippingCost uid =

findUser uid >>= \u ->

userZip u >>= \z ->

shippingCost z

The compiler can stop here as all remaining steps are stylistic changes only. To get
back to our exact original expression, we only need to eta-reduce1 the lambdas:

findUserShippingCost :: UserId -> Maybe Cost

findUserShippingCost uid =

findUser uid >>=

userZip >>=

shippingCost

And remove our arbitrary line breaks:

findUserShippingCost :: UserId -> Maybe Cost

findUserShippingCost uid = findUser uid >>= userZip >>= shippingCost

Wrapping Up

And thus ends our discussion of monads. This also ends our discussion of Maybe.
You’ve now seen the type itself and three of Haskell’s most important abstractions,

1The process of simplifying \x -> f x to the equivalent form f.

CHAPTER 4. MONAD 47

which make its use convenient while still remaining explicit and safe. To highlight
the point that these abstractions (Functor, Applicative, and Monad) are interfaces
shared bymany types, the next and final sectionwill briefly showa fewother useful
types that also have these three interfaces.

Other Types

The three abstractions you’ve seen all require a certain kind of value. Specifically,
a value with some other bit of information, often referred to as its context. In the
case of a type like Maybe a, the a represents the value itself and Maybe represents
the fact that it may or may not be present. This potential non-presence is that
other bit of information, its context.

Haskell’s type system is unique in that it lets us speak specifically about this other
bit of information without involving the value itself. In fact, when defining in-
stances for Functor, Applicative and Monad, we were defining an instance for Maybe,
not for Maybe a. When we define these instances we’re not defining how Maybe a, a
value in some context, behaves under certain computations, we’re actually defin-
ing how Maybe, the context itself, behaves under certain computations.

This kind of separation of concerns is difficult to understand when you’re only ac-
customed to languages that don’t allow for it. I believe it’s why topics like monads
seem so opaque to those unfamiliar with a type system like this. To strengthen the
point that what we’re really talking about are behaviors and contexts, not any one
specific thing, this chapter will explore types that represent other kinds of contexts
and show how they behave under all the same computations we saw for Maybe.

Either

Haskell has another type to help with computations that may fail:

data Either a b = Left a | Right b

48

CHAPTER 5. OTHER TYPES 49

Traditionally, the Right constructor is used for a successful result (what a function
would have returned normally) and Left is used in the failure case. The value
of type a given to the Left constructor is meant to hold information about the
failure: why did it fail? This is only a convention, but it’s a strong one that we’ll use
throughout this chapter. To see one formalization of this convention, take a look
at Control.Monad.Except. It can appear intimidating because it is so generalized,
but Example 1 should look a lot like what I’m about to walk through here.

With Maybe a, the a was the value and Maybe was the context. Therefore, we made
instances of Functor, Applicative, and Monad for Maybe (not Maybe a). With Either as
we’ve written it above, b is the value and Either a is the context, therefore Haskell
has instances of Functor, Applicative, and Monad for Either a (not Either a b).

This use of Left a to represent failure with error information of type a can get
confusing whenwe start looking at functions like fmap. Here’s why: the generalized
type of fmap talks about f a and I said our instance would be for Either a making
that Either a a, but they aren’t the same a!

For this reason, we can imagine an alternate definition of Either that uses different
variables. This is perfectly reasonable since the variables are chosen arbitrarily
anyway:

data Either e a = Left e | Right a

When we get to fmap (and others), things are clearer:

-- (a -> b) f a -> f b

fmap :: (a -> b) -> Either e a -> Either e b

ParserError

As an example, consider some kind of parser. If parsing fails, it would be nice to
include some information about what triggered the failure. To accomplish this, we
first define a type to represent this information. For our purposes, it’s the line and
column where something unexpected appeared, but it could be much richer than
that including what was expected and what was seen instead:

data ParserError = ParserError Int Int

http://hackage.haskell.org/package/mtl-2.2.1/docs/Control-Monad-Except.html
http://hackage.haskell.org/package/mtl-2.2.1/docs/Control-Monad-Except.html#g:3

CHAPTER 5. OTHER TYPES 50

From this, we can make a domain-specific type alias built on top of Either. We
can say a value that we parse may fail. If it does, error information will appear in
a Left-constructed result. If it succeeds, we’ll get the a we originally wanted in a
Right-constructed result.

-- Either e a = Left e | Right a

type Parsed a = Either ParserError a -- = Left ParserError | Right a

Finally, we can give an informative type to functions thatmay produce such results:

parseJSON :: String -> Parsed JSON

parseJSON = undefined

This informs callers of parseJSON that it may fail and, if it does, the invalid character
and line can be found:

jsonString = "..."

case parseJSON jsonString of

Right json -> -- do something with json

Left (ParserError ln col) -> -- do something with the error information

Functor

You may have noticed that we’ve reached the same conundrum as with Maybe:
often, the best thing to do if we encounter a Left result is to pass it along to our
own callers. Wouldn’t it be nice if we could take some JSON-manipulating function
and apply it directly to something that we parse? Wouldn’t it be nice if the “pass
along the errors” concern were handled separately?

-- Replace the value at the given key with the new value

replace :: Key -> Value -> JSON -> JSON

replace = undefined

--

CHAPTER 5. OTHER TYPES 51

-- This is a type error!

--

-- replace "admin" False is (JSON -> JSON), but parseJSON returns (Parsed JSON)

--

replace "admin" False (parseJSON jsonString)

Parsed a is a value in some context, like Maybe a. This time, rather than only
present-or-non-present, the context is richer. It represents present-or-non-
present-with-error. Can you think of how this context should be accounted for
under an operation like fmap?

-- (a -> b) -> f a -> f b

-- (a -> b) -> Either e a -> Either e b

fmap :: (a -> b) -> Parsed a -> Parsed b

fmap f (Right v) = Right (f v)

fmap _ (Left e) = Left e

If the value is there, we apply the given function to it. If it’s not, we pass along the
error. Now we can do something like this:

fmap (replace "admin" False) (parseJSON jsonString)

If the incoming string is valid, we get a successful Parsed JSON result with the
"admin" key replaced by False. Otherwise, we get an unsuccessful Parsed JSON

result with the original error message still available.

Knowing that Control.Applicative provides (<$>) as an infix synonym for fmap, we
could also use that to make this read a bit better:

replace "admin" False <$> parseJSON jsonString

Speaking of Applicative…

CHAPTER 5. OTHER TYPES 52

Applicative

It would also be nice if we could take two potentially failed results and pass themas
arguments to some function that takes normal values. If any result fails, the overall
result is also a failure. If all are successful, we get a successful overall result. This
sounds a lot like what we did with Maybe. The only difference is that we’re doing it
for a different kind of context.

-- Given two json objects, merge them into one

merge :: JSON -> JSON -> JSON

merge = undefined

jsonString1 = "..."

jsonString2 = "..."

merge <$> parseJSON jsonString1 <*> parseJSON jsonString2

merge <$> parseJSON jsonString1 gives us a Parsed (JSON -> JSON). (If this doesn’t
make sense, glance back at the examples in the Applicative chapter.) Whatwehave
is a function in a Parsed context. parseJSON jsonString2 gives us a Parsed JSON, a
value in a Parsed context. The job of (<*>) is to apply the Parsed function to the
Parsed value and produce a Parsed result.

Defining (<*>) starts out all right: if both values are present we’ll get the result of
applying the function wrapped up again in Right. If the second value’s not there,
that error is preserved as a new Left value:

-- f (a -> b) -> f a -> f b

-- Either e (a -> b) -> Either e a -> Either e b

(<*>) :: Parsed (a -> b) -> Parsed a -> Parsed b

Right f <*> Right x = Right (f x)

Right _ <*> Left e = Left e

Astute readers may notice that we could reduce this to one pattern by using fmap.
This is left as an exercise.

CHAPTER 5. OTHER TYPES 53

What about the case where the first argument is Left? At first this seems trivial:
there’s no use inspecting the second value because we know something has al-
ready failed, so let’s pass that along, right? Well, what if the second value was also
an error? Which error should we keep? Either way we discard one of them. Any
potential loss of information should be met with pause.

It turns out, it doesn’t matter, at least not as far as the Applicative Laws are con-
cerned. If choosing one over the other had violated any of the laws, wewould have
had our answer. Beyond those, we don’t know how this instance will eventually be
used by end-users and we can’t say which is the “right” choice standing here now.

Given that the choice is arbitrary, I present the actual definition from Control.Applicative:

Left e <*> _ = Left e

Monad

When thinking through the Monad instance for our Parsed type, we don’t have the
same issue of deciding which error to propagate. Remember that the extra power
offered by monads is that computations can depend on the results of prior com-
putations. When the context involved represents failure (which may not always
be the case!), any single failing computation must trigger the omission of all sub-
sequent computations (since they could be depending on some result that’s not
there). This means we only need to propagate that first failure.

Let’s say we’re interacting with a JSON web service for getting blog post content.
The responses include the body of the post as a string of HTML:

{

"title": "A sweet blog post",

"body": "<p>The post content...</p>"

}

Parsing JSON like this includes parsing the value at the "body" key into a structured
HTML data type. For this, we can re-use our Parsed type:

parseHTML :: Value -> Parsed HTML

parseHTML = undefined

https://gist.github.com/pbrisbin/b9a0c142d6ccdb8580a5

CHAPTER 5. OTHER TYPES 54

We can directly parse a String of JSON into the HTML present at one of its keys by
binding the two parses together with (>>=):

-- Grab the value at the given key

at :: Key -> JSON -> Value

at = undefined

parseBody :: String -> Parsed HTML

parseBody jsonString = parseJSON jsonString >>= parseHTML . at "body"

First, parseJSON jsonString gives us a Parsed JSON. This is the m a in (>>=)’s type
signature. Then we use (.) to compose a function that gets the value at the "body"

key and passes it to parseHTML. The type of this function is (JSON -> Parsed HTML),
which aligns with the (a -> m b) of (>>=)’s second argument. Knowing that (>>=)
will return m b, we can see that that’s the Parsed HTML we’re after.

If both parses succeed, we get a Right-constructed value containing the HTML

we want. If either parse fails, we get a Left-constructed value containing the
ParserError from whichever failed.

Allowing such a readable expression (parse JSON and then parse HTML at body),
requires the following straightforward implementation for (>>=):

-- m a -> (a -> m b) -> m b

-- Either e a -> (a -> Either e b) -> Either e b

(>>=) :: Parsed a -> (a -> Parsed b) -> Parsed b

Right v >>= f = f v

Left e >>= _ = Left e

Armed with instances for Functor, Applicative, and Monad for both Maybe

and Either e, we can use the same set of functions (those with Functor f,
Applicative f or Monad m in their class constraints) and apply them to a variety of
functions that may fail (with or without useful error information).

This is a great way to reduce a project’smaintenance burden. If you start with func-
tions returning Maybe values but use generalized functions for (e.g.) any Monad m,
you can later upgrade to a fully fledged Error type based on Eitherwithout having
to change most of the code base.

CHAPTER 5. OTHER TYPES 55

List

At various points in the book, I relied on most programmers having an under-
standing of arrays and lists of elements to ease the learning curve up to Maybe and
particularly fmap. In this chapter, I’ll recap and expand on some of the things I’ve
said before and then show that [a] is more than a list of elements over which we
can map. It also has Applicative and Monad instances that make it a natural fit for
certain problems.

Tic-Tac-Toe and the Minimax algorithm

For this chapter’s example, I’m going to show portions of a program for playing
Tic-Tac-Toe. The full program is too large to include, but portions of it are well-
suited to using the Applicative and Monad instances for []. The program uses an
algorithm known as minimax to choose the best move to make in a game of Tic-
Tac-Toe.

In short, the algorithm plays out all possible moves from the perspective of one
player and chooses the one that maximizes their score and minimizes their oppo-
nent’s, hence the name. Tic-Tac-Toe is a good game for exploring this algorithmbe-
cause the possible choices are small enough that we can take the naive approach
of enumerating all of them, then choosing the best.

To model our Tic-Tac-Toe game, we’ll need some data types:

-- A player is either Xs or Os

data Player = X | O

-- A square is either open, or taken by one of the players

data Square = Open | Taken Player

-- A row is top, middle, or bottom

data Row = T | M | B

-- A column is left, center, or right

data Column = L | C | R

http://en.wikipedia.org/wiki/Minimax

CHAPTER 5. OTHER TYPES 56

-- A position is the combination of row and column

type Position = (Row, Column)

-- A space is the combination of position and square

type Space = (Position, Square)

-- Finally, the board is a list of spaces

type Board = [Space]

And some utility functions:

-- Is the game over?

over :: Board -> Bool

over = undefined

-- The opponent for the given player

opponent :: Player -> Player

opponent = undefined

-- Play a space for the player in the given board

play :: Player -> Position -> Board -> Board

play = undefined

Applicative

One of the things this program needs to do is generate a Board with all Squares
Open. We could do this directly:

openBoard :: Board

openBoard =

[((T, L), Open), ((T, C), Open), ((T, R), Open)

, ((M, L), Open), ((M, C), Open), ((M, R), Open)

, ((B, L), Open), ((B, C), Open), ((B, R), Open)

]

But that approach is tedious and error-prone. Another way to solve this problem
is to create an Open square for all combinations of Rows and Columns. We can do
exactly this with the Applicative instance for []:

CHAPTER 5. OTHER TYPES 57

openSpace :: Row -> Column -> Space

openSpace r c = ((r, c), Open)

openBoard :: Board

openBoard = openSpace <$> [T, M, B] <*> [L, C, R]

Let’s walk through the body of openBoard to see why it gives the result we need.
First, openSpace <$> [T, M, B] maps the two-argument openSpace over the list
[T, M, B]. This creates a list of partially applied functions. Each of these functions
has been given a Row but still needs a Column to produce a full Space. We can show
this as a list of lambdas taking a Column and building a Space with the Row it has
already:

(<$>) :: (a -> b) -> f a -> f b

-- a b

openSpace :: Row -> (Column -> Space)

-- f b

openSpace <$> [T, M, B] :: [] (Column -> Space)

openSpace <$> [T, M, B]

-- => [(\c -> ((T, c), Open))

-- => , (\c -> ((M, c), Open))

-- => , (\c -> ((B, c), Open))

-- =>]

Like the Maybe example from the Applicative chapter, we’ve created a function
in a context. Here we have the function (Column -> Space) in the [] context:
[(Column -> Space)]. Separating the type constructor from its argument and
writing [(Column -> Space)] as [] (Column -> Space) shows how it matches the
f b in (<$>)s type signature. How do we apply a function in a context to a value in
a context? With (<*>).

Using (<*>) with lists means applying every function to every value:

openSpace <$> [T, M, B] <*> [L, C, R]

-- => [(\c -> ((T, c), Open)) L (first function applied to each value)

CHAPTER 5. OTHER TYPES 58

-- => , (\c -> ((T, c), Open)) C

-- => , (\c -> ((T, c), Open)) R

-- => , (\c -> ((M, c), Open)) L (second function applied to each value)

-- => , (\c -> ((M, c), Open)) C

-- => , (\c -> ((M, c), Open)) R

-- => , (\c -> ((B, c), Open)) L (third function applied to each value)

-- => , (\c -> ((B, c), Open)) C

-- => , (\c -> ((B, c), Open)) R

-- =>]

--

-- => [((T, L), Open)

-- => , ((T, C), Open)

-- => , ((T, R), Open)

-- => , ((M, L), Open)

-- => , ((M, C), Open)

-- => , ((M, R), Open)

-- => , ((B, L), Open)

-- => , ((B, C), Open)

-- => , ((B, R), Open)

-- =>]

Monad and non-determinism

The heart of the minimax algorithm is playing out a hypothetical future where
each available move is made to see which one works out best. The Monad instance
for [] is perfect for this problem when we think of lists as representing one non-
deterministic value rather than a list of many deterministic ones.

The list [1, 2, 3] represents a single number that is any one of 1, 2, or 3 at once.
The type of this value is [Int]. The Int tells us the type of the value we’re dealing
with and the [] tells us that it’s many values at once.

Under this interpretation, Functor’s fmap represents changing probabilities: we
have a number that can be any of 1, 2, or 3. When we fmap (+1), we get back a
number that can be any of 2, 3, or 4. We’ve changed the non-determinism without
changing how much non-determinism there is. That fact, that fmap can’t increase
or decrease the non-determinism, is actually guaranteed through the Functor
laws.

CHAPTER 5. OTHER TYPES 59

fmap (+1) [1, 2, 3]

-- => [2, 3, 4]

Applicative’s (<*>) can be thought of as combining probabilities. Given a function
that can be any of (+1), (+2), or (+3) and a number that can be any of 1, 2, or 3,
(<*>)will give us a newnumber that can be any of the combined results of applying
each possible function to each possible value.

[(+1), (+2), (+3)] <*> [1, 2, 3]

-- => [2,3,4,3,4,5,4,5,6]

Finally, Monad’s (>>=) is used to expand probabilities. Looking at its type again:

(>>=) :: m a -> (a -> m b) -> m b

And specializing this to lists:

-- m a -> (a -> m b) -> m b

(>>=) :: [] a -> (a -> [] b) -> [] b

We can see that it takes an a that can be one of many values, and a function from a

to [b], i.e. a b that can be one ofmany values. (>>=) applies the function (a -> [b])

to every a in the input list. The result must be [[b]]. To return the required type
[b], the list is then flattened. Because the types are so generic, this is the only im-
plementation this function can have. If we rule out obvious mistakes like ignoring
arguments and returning an empty list, reordering the list, or adding or dropping
elements, the only way to define this function is to map, then flatten.

xs >>= f = concat (map f xs)

Given our same number, one that can be any of 1, 2, or 3, and a function that takes
a (deterministic) number and produces a new set of possibilities, (>>=)will expand
the probability space:

CHAPTER 5. OTHER TYPES 60

next :: Int -> [Int]

next n = [n - 1, n, n + 1]

[1, 2, 3] >>= next

-- => concat (map next [1, 2, 3])

-- => concat [[1 - 1, 1, 1 + 1], [2 - 1, 2, 2 + 1], [3 - 1, 3, 3 + 1]]

-- => [0,1,2,1,2,3,2,3,4]

We can continue expanding by repeatedly using (>>=):

[1, 2, 3] >>= next >>= next

-- => [-1,0,1,0,1,2,1,2,3,0,1,2,1,2,3,2,3,4,1,2,3,2,3,4,3,4,5]

If we picture the next function as a step in time, going from some current state
to multiple possible next states, we can think of >>= next >>= next as looking two
steps into the future, exploring the possible states reachable from possible states.

The Future

If the theory above didn’t make complete sense, that’s OK. Let’s get back to our Tic-
Tac-Toe program and see how this works in the context of a real-word example.

When it’s our turn (us being the computer player), we want to play out the next
turn for every move we have available. For each of those next turns, we want to
do the same thing again. We want to repeat this process until the game is over. At
that point, we can see which choice led to the best result and use that one.

One thing we’ll need, and our first opportunity to use Monad, is to find all available
moves for a given Board:

available :: Board -> [Position]

available board = do

(position, Open) <- board

return position

CHAPTER 5. OTHER TYPES 61

In this expression, we’re treating a Board as a list of Spaces. In other words, it’s one
Space that is all of the spaces on the board at once. We’re using (>>=), through do-
notation, to map, then flatten, each Space to its Position. We’re using do-notation
to take advantage of the fact that if we use a pattern in the left-hand side of (<-),
but the value doesn’t match the pattern, it’s discarded. This expression is a concise
map-filter that relies on (>>=) to do the mapping and pattern matching to do the
filtering.

Return

The return function, seen at the end of available, is not like return statements
you’ll find in other languages. Specifically, it does not abort the computation, pre-
senting its argument as the return value for the function call. Nor is it always re-
quired at the end of a monadic expression. return is another function from the
Monad type class. Its job is to take some value of type a andmake it an m a. Concep-
tually, it should do this by putting the value in some default or minimal context.
For Maybe this means applying Just. For [], we put the value in a singleton list:

-- a -> m a

return :: a -> [] a

return x = [x]

In our example, position is of type Position (i.e. a) and we need the expression to
have type [Position] (i.e. m a), so return position does that.

Another Monad-using function of theminimax algorithm is one that expands a given
board into the end-states reached when each player plays all potential moves:

future :: Player -> Board -> [Board]

future player board = do

if over board

then return board

else do

space <- available board

future (opponent player) (play player space board)

CHAPTER 5. OTHER TYPES 62

First we check if the Board is over. If that’s the case, the future is a singleton list
of only that Board–again, return board does that. Otherwise, we explore all avail-
able spaces. For each of them, we explore into the future again, this time for our
opponent on a Board where we’ve played that space. This process repeats until
someone wins or we fill the board in a draw. To fit this function into our Tic-Tac-
Toe-playing program, we would score each path as we explore it and play the path
with the best score.

While a full program like this is very interesting, it quickly gets complicated with
things not important to our discussion. To see a complete definition of aminimax-
using Tic-Tac-Toe-playing programwritten in Ruby, check out Never Stop Building’s
Understanding Minimax.

IO

So far, we’ve seen three types: Maybe a, Either e a, and [a]. These types all rep-
resent a value with some other bit of information: a context. If a is the User you’re
trying to find, the Maybe says if she was actually found. If the a is the JSON you’re at-
tempting to parse, the Either e holds information about the error when the parse
fails. If a is a number, then [] tells you it is actually many numbers at once, and
how many.

For all these types, we’ve seen the behaviors that allow us to add them to the
Functor, Applicative, and Monad type classes. These behaviors obey certain laws
which allow us to reason about what will happen when we use functions like fmap

or (>>=). In addition to this, we can also reach in andmanually resolve the context.
We can define a fromMaybe function to reduce a Maybe a to an a by providing a
default value for the Nothing case. We can do a similar thing for Either e a with
the either function. Given a [a]we can resolve it to an a by selecting one at a given
index (taking care to handle the empty list).

The IO type, so important to Haskell, is exactly like the three types you’ve seen so
far in that it represents a value in some context. With a value of type IO a, the a is
the thing you want and the IO means some input or output will be performed in
the real word as part of producing that a. The difference is that the only way we
can combine IO values is through their Functor, Applicative, and Monad interfaces.
In fact, it’s really only through its Monad interface since the Applicative and Functor

instances are defined in terms of it. We can’t ourselves resolve an IO a to an a.

http://neverstopbuilding.com/minimax

CHAPTER 5. OTHER TYPES 63

This has many ramifications in how programs must be constructed.

Effects in a pure world

One question I get asked a lot is, “how is it that Haskell, a pure functional program-
ming language, can actually do anything? How does it create or read files? How
does it print to the terminal? How does it serve web requests?”

The short answer is, it doesn’t. To show this, let’s start with the following Ruby
program:

def main

print "give me a word: "

x = gets

puts x

end

When you run this program with the Ruby interpreter, does anything happen? It
depends on your definition of happen. Certainly, no I/O will happen, but that’s not
nothing. Objects will be instantiated, and a method has been defined. By defining
this method, you’ve constructed a blue-print for some actions to be performed,
but then neglected to perform them.

Ruby expects (and allows) you to invoke effectingmethods like mainwhenever and
wherever you want. If you want the above program to do something, you need to
call main at the bottom. This is a blessing and a curse. While the flexibility is appre-
ciated, it’s a constant source of bugs and makes methods and objects impossible
to reason about without looking at their implementations. A method may look
“pure”, but internally it might access a database, pull from an external source of
randomness, or fire nuclear missiles. Haskell doesn’t work like that.

Here’s a translation of the Ruby program into Haskell:

main :: IO ()

main = do

putStr "give me a word: "

CHAPTER 5. OTHER TYPES 64

x <- getLine

putStrLn x

Much like the Ruby example, this code doesn’t do anything. It defines a function
main that states what should happen when it’s executed. It does not execute any-
thing itself. Unlike Ruby, Haskell does not expect or allow you to call main yourself.
The Haskell runtime will handle that and performwhatever I/O is required for you.
This is how I/O happens in a pure language: you define the blue-print, a pure value
that says how to perform any I/O, then you give that to a separate runtime, which
is in charge of actually performing it.

Statements and the curse of do-notation

The Haskell function above used do-notation. I did this to highlight that the rea-
son do-notation exists is for Haskell code to look like that equivalent, imperative
Ruby, onwhich it was based. This fact has the unfortunate consequence of tricking
new Haskell programmers into thinking that putStr (for example) is an imperative
statement that actually puts the string to the screen when evaluated.

In the Ruby code, each statement is implicitly combined with the next as the inter-
preter sees them. There is some initial global state, statements modify that global
state, and the interpreter handles ensuring that subsequent statements see an
updated global state from all those that came before. If Ruby used a semicolon
instead of white space to delimit statements, we could almost think of (;) as an
operator for combining statements and keeping track of the global state between
them.

In Haskell, there are no statements, only expressions. Every expression has a type
and compound expressions must be combined in a type-safe way. In the case of
IO expressions, they are combined with (>>=). The semantic result is very similar
to Ruby’s statements. It’s because of this that you may hear (>>=) referred to as
a programmable semicolon. In truth, it’s so much more than that. It’s a first-class
function that can be passed around, built on top of, and overloaded from type to
type.

To see how this works, let’s build an equivalent definition for main, only this time
no do-notation, only (>>=).

CHAPTER 5. OTHER TYPES 65

Typed puzzles

Starting with the type of main, we immediately see something worth explaining:

main :: IO ()

The type of main is pronounced IO void. () itself is a type defined with a single
constructor. It can also be thought of as an empty tuple:

data () = ()

It’s used to stand inwhen a computation affects the context, but produces nouseful
result. It’s not specific to IO (or monads for that matter). For example, if you were
chaining a series of Maybe values together using (>>=) and under some condition
youwanted tomanually trigger an overall Nothing result, you could insert a Nothing
of type Maybe () into the expression.

This is exactly how the guard function works. When specialized to Maybe, its defi-
nition is:

guard :: Bool -> Maybe ()

guard True = Just ()

guard False = Nothing

It is used like this:

findAdmin :: UserId -> Maybe User

findAdmin uid = do

user <- findUser uid

guard (isAdmin user)

return user

If you’re having trouble seeing why this expression works, start by de-sugaring
from do-notation to the equivalent expression using (>>=), then use the Maybe-
specific definitions of (>>=), return, and guard to reduce the expression when an
admin is found, a non-admin is found, or no user is found.

Next, let’s look at the individual pieces we’ll be combining into main:

http://hackage.haskell.org/package/base-4.7.0.2/docs/Control-Monad.html#v:guard

CHAPTER 5. OTHER TYPES 66

putStr :: String -> IO ()

putStrLn :: String -> IO ()

putStr also doesn’t have any useful result so it uses (). It takes the given String

and returns an action that represents printing that string, without a trailing newline,
to the terminal. putStrLn is exactly the same, but includes a trailing newline.

getLine :: IO String

getLine doesn’t take any arguments and has type IO String which means an ac-
tion that represents reading a line of input from the terminal. It requires IO and
presents the read line as its result.

Next, let’s review the type of (>>=):

(>>=) :: m a -> (a -> m b) -> m b

In our case, m will always be IO, but a and b will be different each time we use
(>>=). The first combination we need is putStr and getLine. putStr "..." fits as
m a, because its type is IO (), but getLine does not have the type () -> IO bwhich
is required for things to line up. There’s another operator, built on top of (>>=),
designed to fix this problem:

(>>) :: m a -> m b -> m b

ma >> mb = ma >>= _ -> mb

It turns its second argument into the right type for (>>=) bywrapping it in a lambda
that accepts and ignores the a returned by the first action. With this, we can write
our first combination:

main = putStr "..." >> getLine

What is the type of this expression? If (>>) is m a -> m b -> m b and we’ve got m a

as IO () and m b as IO String. This combined expression must be IO String. It

CHAPTER 5. OTHER TYPES 67

represents an action that, when executed, would print the given string to the termi-
nal, then read in a line.

Our next requirement is to put this action together with putStrLn. Our current
expression has type IO String and putStrLn has type String -> IO (). This lines
up perfectly with (>>=) by taking m as IO, a as String, and b as ():

main = putStr "..." >> getLine >>= putStrLn

This code is equivalent to the do-notation version I showed before. If you’re not
sure, try to manually convert between the two forms. The steps required were
shown in the do-notation sub-section of the Monad chapter.

Hopefully, this exercise has convinced you that while I/O in Haskell may appear
confusing at first, things are quite a bit simpler:

• Any function with an IO type represents an action to be performed
• Actions are not executed, only combined into larger actions using (>>=)

• The onlyway to get the runtime to execute an action is to assign it the special
name main

From these rules and the general requirement of type-safety, it emerges that any
value of type IO a can only be called directly or indirectly from main.

Other instances

Unlike previous chapters, here I jumped right into Monad. This was because there’s
a natural flow from imperative code to monadic programming with do-notation,
to the underlying expressions combined with (>>=). As I mentioned, this is the
only way to combine IO values. While IO does have instances for Functor and
Applicative, the functions in these classes (fmap and (<*>)) are defined in terms
of return and (>>=) from its Monad instance. For this reason, I won’t be showing
their definitions. That said, these instances are still useful. If your IO code doesn’t
require the full power of monads, it’s better to use a weaker constraint. More gen-
eral programs are better; weaker constraints on what kind of data your functions
can work with makes them more generally useful.

CHAPTER 5. OTHER TYPES 68

Functor

fmap, when specialized to IO, has the following type:

fmap :: (a -> b) -> IO a -> IO b

It takes a function and an IO action and returns another IO action, which represents
applying that function to the eventual result returned by the first.

It’s common to see Haskell code like this:

readInUpper :: FilePath -> IO String

readInUpper fp = do

contents <- readFile fp

return (map toUpper contents)

All this code does is form a new action that applies a function to the eventual result
of another. We can say this more concisely using fmap:

readInUpper :: FilePath -> IO String

readInUpper fp = fmap (map toUpper) (readFile fp)

As another example, we can use fmap with the Prelude function lookup to write a
safer version of getEnv from the System.Environmentmodule. getEnv has the nasty
quality of raising an exception if the environment variable you’re looking for isn’t
present. Hopefully this book has convinced you it’s better to return a Maybe in this
case. The lookupEnv functionwas eventually added to themodule, but if you intend
to support old versions, you’ll need to define it yourself:

import System.Environment (getEnvironment)

-- lookup :: Eq a => a -> [(a, b)] -> Maybe b

--

-- getEnvironment :: IO [(String, String)]

lookupEnv :: String -> IO (Maybe String)

lookupEnv v = fmap (lookup v) getEnvironment

CHAPTER 5. OTHER TYPES 69

Applicative

Imagine a library function for finding differences between two strings:

data Diff = Diff [Difference]

data Difference = Added | Removed | Changed

diff :: String -> String -> Diff

diff = undefined

How would we run this code on files from the file system? One way, using Monad,
would look like this:

diffFiles :: FilePath -> FilePath -> IO Diff

diffFiles fp1 fp2 = do

s1 <- readFile fp1

s2 <- readFile fp2

return (diff s1 s2)

Notice that the second readFile does not depend on the result of the first. Both
readFile actions produce values that are combined at once using the pure function
diff. We canmake this lack of dependency explicit and bring the expression closer
to what it would look like without IO values by using Applicative:

diffFiles :: FilePath -> FilePath -> IO Diff

diffFiles fp1 fp2 = diff <$> readFile fp1 <*> readFile fp2

As an exercise, try breaking down the types of the intermediate expressions here,
like we did for Maybe in the Follow the Types sub-section of the Applicative chapter.

Learning more

There are many resources online for learning about Monad and IO in Haskell. I rec-
ommend reading them all. Some are better than others and many get a bad rap

CHAPTER 5. OTHER TYPES 70

for using some grandiose analogy that only makes sense to the author. Be mind-
ful of this, but know that no single tutorial can give you a complete understanding
because that requires looking at the same abstract thing from a variety of angles.
Therefore, the best thing to do is read it all and form your own intuitions.

If you’re interested in the origins of monadic I/O in Haskell, I recommend Tackling
the Awkward Squad: monadic input/output, concurrency, exceptions, and foreign-
language calls in Haskell by Simon Peyton Jones and Comprehending Monads by
Philip Wadler.

http://research.microsoft.com/en-us/um/people/simonpj/papers/marktoberdorf/mark.pdf
http://research.microsoft.com/en-us/um/people/simonpj/papers/marktoberdorf/mark.pdf
http://research.microsoft.com/en-us/um/people/simonpj/papers/marktoberdorf/mark.pdf
http://ncatlab.org/nlab/files/WadlerMonads.pdf

What’s Next

At the start of this book, I said my intention was not to teach you Haskell. Instead,
my goal was to give you a sense of writing realistic code that takes advantage of
an uncommon feature found in the Haskell language. I wanted to strike a balance
between short sound-bites without much depth and the large investment of time
required to become proficient in the language.

The central theme, the Maybe type, is an example of Haskell’s principled stance
resulting in tangible benefit for programmers. The frustration caused by Tony
Hoare’s self-proclaimed “billion-dollar mistake” is something I’ll gladly live without.
This same principled stance has lead to many similar outcomes in the Haskell lan-
guage. From monadic I/O to advanced concurrency primitives, Haskell is full of
constructs only made possible through slow and thoughtful language design. My
hope is that by seeing–and really understanding–the relatively small example that
is Maybe, you’ll be motivated to explore the language further.

If you are so inclined, there are many resources online for getting up and running,
what to read, etc. I mentioned Chris Allan’s learning path already. There’s also
Haskell in 5 steps. I’m a huge fan of Learn You a Haskell for Great Good! and
Real World Haskell if you’re looking for books. If you prefer an exercise-based
approach, we have a Haskell Fundamentals trail on Upcase. Finally, don’t be afraid
to read academic papers. They are dense sources of very good information.

71

http://en.wikipedia.org/wiki/Tony_Hoare#Apologies_and_retractions
https://github.com/bitemyapp/learnhaskell
https://wiki.haskell.org/Haskell_in_5_steps
http://learnyouahaskell.com/
http://book.realworldhaskell.org/
https://upcase.com/haskell-fundamentals

	Introduction
	An Alternate Solution
	Required Experience
	Structure
	What This Book is Not

	Haskell Basics
	Our Own Data Types
	Pattern Matching
	Sum Types
	Kinds and Parameters
	Maybe
	Don't Give Up

	Functor
	Choices
	Discovering a Functor
	About Type Classes
	Functor
	The Functor Laws
	Why Is This Useful?
	Curried Form
	Recap

	Applicative
	Hiding Details
	Follow The Types
	Apply
	Chaining
	Applicative In the Wild

	Monad
	More Power
	And Then?
	Bind
	Chaining
	Do Notation
	Wrapping Up

	Other Types
	Either
	List
	IO

	What's Next

