
thoughtbot

Maintaining
Open Source Projects

by Tute Costa

Maintaining Open Source Projects

Tute Costa

April 27, 2016

Contents

Preface iv

Community 1

Communication channels . 1

Answering questions . 2

Issue tracker gardening . 3

How much communication is enough? 5

On effective feedback . 6

Expectations and guilt . 8

Git & GitHub 9

Request small, cohesive commits . 9

Request good commit messages . 10

Request good git history . 13

Reject patches . 14

Maintaining quality 16

Adopt a style guide . 17

Use static analysis tools . 18

i

CONTENTS ii

Request regression tests for every change 19

Run tests on every commit . 20

Choose your own values . 21

Documentation 23

README . 23

Overview . 24

Installing . 25

News . 26

Code of Conduct . 26

Contributing . 27

Releasing . 28

Wiki . 28

Licenses 30

Public domain . 31

Copyleft licenses . 31

Permissive licences . 34

Dual Licensing . 38

Other permissive (and informal) licenses 39

Versioning & Releasing 40

Semantic Versioning . 40

Publishing a new release . 42

Maintenance releases . 43

Release version 1.0 . 43

Releasing new versions . 44

CONTENTS iii

Security releases . 45

Deprecation cycles . 48

Quitting as a maintainer . 48

Conclusion 50

Resources 51

Preface

If you want to learn the soft skills needed to grow and maintain an open source
project, this book is for you. Leading open source projects comes with non-
technical responsibilities. A project maintainer should feel comfortable shaping
the community, promoting the library, keeping good communication with dif-
ferent people, deciding when to release new versions, and prioritizing all these
tasks.

Software companies can benefit from the practices that open source teams have
been doing well for years: thorough code reviews, forthright communication, and
efficient collaboration. The best open source teams also have clear documenta-
tion, regular releases, and predictable versioning. This book explores all of the
above.

Other kinds of collaborative projects, such as libraries, government data, geo-
graphical data, media, to name a few, will find theworkflows described here useful
as well.

Whether you lead open source initiatives, agile or other forms of collaborative
projects, this book will help you make your work more effective. This is what we
learned about creating, maintaining and growing our open source projects.

You can find the source of this book in GitHub.

iv

https://github.com/GITenberg
https://github.com/project-open-data
https://openmundi.github.io/
https://openmundi.github.io/
http://search.creativecommons.org/
https://github.com/thoughtbot/maintaining-open-source-projects

Community

An active community is themost valuable asset for an open source project. But like
the code itself, it can also be one of its biggest liabilities. A community that grows
quickly can get out of hand, making it harder for you to stay organized and keep up
with. Questions and feature requests will begin queueing up. While participating
in one thread, you could lose track of what’s being discussed in another, where
soon they will demand your attention.

In this chapter we describe practices that will help maintain a healthy signal-to-
noise ratio, while keeping everyone’s expectations in check.

Communication channels

Imagine an open source project where the most recent question in the issue
tracker remains unanswered for weeks. You think of how else to contact people,
but even a search for the maintainer’s public profiles finds no activity. You find
yourself on a dead-end street: nothing is happening, and there is no indication
that anything will happen soon. You would leave this place in search of greener
pastures, trying to find another project that, even if not as useful for you as this
one looks like, has an active community sustaining it.

As maintainers, we want to avoid this feeling of abandonment. Communication is
vital to keep the air fresh, even if to only say “I don’t have the time right now, hope-
fully next week.” It shows you keep the project in mind, you care about feedback,
and you are honest about availability. Always keep the channel open, even when
you can’t invest enough time to move forward any issue that’s being treated. It

1

CHAPTER 1. COMMUNITY 2

goes a long way into building a community that trusts you and your project.

There are different communication channels for different needs:

• Issue trackers for concrete tasks that need to be done on the source, such
as tracking software bugs, documenting desired features, and making con-
crete improvements to the code.

• Wikis for community-maintained documentation and how-to guides.
• Forums and Q&A websites for answering specific questions users have
about the project.

• Mailing lists and chat rooms for general talk.

If any of these channels present little activity, your project can come across like
a half empty restaurant, exposing a negative image. If this is the case, it will be
better off not having one or more of these features enabled until your community
has grown larger and is ready to leverage them.

Answering questions

Any participation is useful to a nascent project. Through users’ questions you can
see where people struggle, why they struggle, and how the software or documen-
tation could improve to make the onboarding process smoother. In the early
stages you should celebrate each interaction because they mean the project is
getting validated.

To foster participation you should acknowledge contributors routinely. Thank
them for the time they spend providing feedback and code. Thank them publicly
and be explicit about how their contributions are useful to you, the project and
the community. People like being appreciated, and are more likely to continue
contributing if you show appreciation for their work.

When the project gets popular, however, participation starts to be more of a lia-
bility. Feature requests, help requests, bug reports, and patches all land in your
email, which will make it tougher to manage. You might even feel guilty about not
responding as timely as you used to. How do we respond when there is more
input than we can go through in a timely fashion?

CHAPTER 1. COMMUNITY 3

One of the first causes of a quickly growing inbox is people using the issue tracker
for questions around implementation details in their software or for things that
aren’t software bugs. You can avoid this by politely asking users to move their
messages, for example to Q&A websites or mailing lists.

It is not always better to move discussions out of the issue tracker though. For
example, aQ&Awebsite like StackOverflowwon’t be helpful when you have a small
audience. In this case, the issue tracker is the right place to ask. A good sign
that the project is ready to grow onto other platforms is when members of your
community organically start responding to issues. There’s a better chance that
questions in other channels will get responses as well.

By always interacting politely communication tends to flow smoothly. This, in turn,
increases the chance users will follow your suggestions. On the other hand, if you
are short and terse, users might feel you didn’t solve a problem you could have
solved, andmay insist you act. Arguingwhere a question belongs is not productive,
and being friendly helps avoid it.

Issue tracker gardening

A common problem that results in clutter in the issue tracker is irreproducibility.
Users may be trying to show a legit issue with your project, but without enough
information to reproduce it, whichmakes it hard to decide if it is indeed a problem
with your project. In this case, ask them to provide more information. You might
link to yourbugreportneedsmore.info for a curated, external explanation around
reproducibility.

Steve Klabnik, who helped tend the Ruby on Rails issue tracker, refers to this type
of work as “gardening”: you regularly pull out the weeds to keep it clean.

Using canned responses for everyday interactions is a time saver. Copy & paste a
paragraph of text, press a button, and you took good care of an issue. An example
we use:

“ This issue seems specific to your application rather than with fac-
tory_girl itself. I suggest you ask about it in:

https://stackoverflow.com/questions/tagged/factory-girl

http://yourbugreportneedsmore.info
http://words.steveklabnik.com/how-to-be-an-open-source-gardener
http://words.steveklabnik.com/how-to-be-an-open-source-gardener

CHAPTER 1. COMMUNITY 4

It will get attention from more people than in this issue tracker.
Thanks!

Some issues get stale, with not even the requester replying to your feedback any-
more. It’s impossible to solve a bug report with not enough information, or which
has nobody who has seen the problem to answer your questions. In these cases
we use an example response like:

“ Since it’s been two months, I hope things are working well for you
now. I’ll close the issue until we can confirm it’s still happening. I’m
happy to continue further discussion whenever needed.

Many people submit very detailed issues. They need only a little encouragement
to convert their work into a patch.

“ Thanks for reporting. That would be a useful addition to the docs
indeed. Can you please send a pull request with your proposed
changes? Thanks!

To an issue with an unclear description another sometimes helpful route to take
is to ask the requester to put together some quick code to further iterate on their
issue (a spike). If the requester implements even part of the needed feature you
can now have a more valuable discussion over a possible implementation, with a
description that is as precise as running code is. Another possibility is that while
working on the spike, the contributor finds that it’s not a great idea after all, and
closes the issue as invalid. This can save you both valuable time.

But, if you believe an issue doesn’t describe something good for the project, ask
further questions and take the time to learn what is being proposed before asking
for sample code. Otherwise, you run the risk of having to reject work you have
asked for.

A middle ground between no code and a running spike is to ask for a natural lan-
guage test case:

“ If you had to describe the kind of test you’d write for this scenario
(even in natural language), what would it be?

https://en.wikipedia.org/wiki/Spike_(software_development)

CHAPTER 1. COMMUNITY 5

Another source of clutter in the issue tracker are questions that are asked repeat-
edly. This is a good sign that there is something in your project that should be
simpler. Better error messages could help, documentation might need more at-
tention or codemight need some refactoring. Before disregarding repeated ques-
tions with variations of RTFM (“read the fucking manual”), ask someone you trust
for feedback. Try to take a step back and see the project as a newcomer would. Do
you see anything that is not clear enough? What could change to lower the odds of
a given problem from reappearing? In the mean time, adding the question to an
FAQ section is a good band-aid, and you can link to it when the question is asked
again.

Howmuch communication is enough?

There are two rules to keep in mind during any discussion:

The bike shed effect (also called “Parkinson’s law of triviality”) states that groups
give disproportionate weight to trivial issues. For example, a committee whose
job is to approve plans for a nuclear power plant spends the majority of its time
on relatively unimportant but easy-to-grasp issues, such as what materials to use
for the staff bike shed, while neglecting the less trivial proposed design of the nu-
clear power plant itself, which is far more important but also far more difficult and
involved to criticize constructively.

When you see more activity than usual in a discussion over a superficial matter
(according to a threshold you define), take one decision (even if arbitrary) and call
it resolved. You will save everybody’s time.

Godwin’s law states that as an online discussion grows longer (regardless of topic
or scope), sooner or later someone will compare someone or something to Hitler
or Nazism. You would find yourself in the unhappy need to quote this law when
this happens.

The miner’s canary of a conversation that went too far and has a low signal-to-
noise ratio is an out of the blue mention of Nazism. When it happens, call the
thread finished and whoever mentioned the Nazis automatically loses the debate.
You can link to the Wikipedia article for extra fun!

https://en.wikipedia.org/wiki/Law_of_triviality
https://en.wikipedia.org/wiki/Godwin%27s_law

CHAPTER 1. COMMUNITY 6

On effective feedback

Having awareness of our cognitive biases is most useful to give and receive feed-
back in a way that feels productive for both the reviewer and the reviewed. A
cognitive bias is a pattern of deviation in judgment from which inferences about
other people and situations may be drawn in an illogical way.

Here are some examples:

Fairness bias describes our tendency to seek balance. If a supplier keeps an open
line of communication with an unhappy customer about a faulty product, the cus-
tomer will respond more favorably regardless of the outcome. The need to be
heard takes precedence over the need for the product working correctly.

Fairness bias can be applied to code reviews. Framing an idea as a question in-
stead of as an assertion makes the contributor feel heard and valued. If we are
the authors of the code being reviewed, we can harness this effect before the con-
versation is even started, by explaining the rationale behind our work beforehand.

Loss aversion describes people’s tendency to strongly prefer avoiding losses to ac-
quiring gains. More concretely, giving you 5 dollars won’t make you extra happy
but if $5 are taken from you, you will get upset. Loss aversion relates with say-
ing “no” to a patch. As a reviewer, giving a clear explanation of the reasons for
your rejection helps avoiding a longer discussion on whether the patch should or
should not bemerged, helping authors seemore objectively the value of their con-
tributions. As a contributor, remember that if you were the reviewer or another
external party, you would probably be a bit more skeptical than you currently are
about the value of your patch.

Daniel Goleman, psychologist, author and science journalist, identifies an online
negative bias: the positive message you wrote may be assumed to be neutral, and
what seemed indifferent to you can be read as hostile. You can avoid this by using
positive language instead of neutral. Written discussions have less bandwidth and
need to include more context than conversations over the phone or in person.

“TheCathedral and theBazaar”, an essay by Eric Raymondon software engineering
methods, states in its 10th lesson:

“ Treat all your contributors as if they are the most valuable resource,
and they will respond by becoming your most valuable resource.

https://en.wikipedia.org/wiki/Cognitive_bias
http://www.amazon.com/Sway-Irresistible-Pull-Irrational-Behavior/dp/0385530609
https://en.wikipedia.org/wiki/Loss_aversion
https://www.youtube.com/watch?v=TBCiSAJ20Wc
https://www.youtube.com/watch?v=TBCiSAJ20Wc

CHAPTER 1. COMMUNITY 7

Raymond’s lesson illustrates the “Chameleon Effect” cognitive bias, also known
as “The Pygmalion Effect” and “unintentional mirroring”, which describes our ten-
dency to take on characteristics that have been arbitrarily assigned to us.

The Pygmalion Effect was studied in a training camp where officers were about
to instruct a leadership development course for junior officers. A subset of the
junior officers would become the next batch of leaders. The training officers were
informed, based on ratings by previous commanders, which trainees presented
“high”, “regular” or “unknown” command potential. What neither trainers nor
trainees knew was that researchers assigned scores randomly.

Four months later all trainees took a test based on the materials they learned
during the program. Researchers found that trainees whom the training officers
thought had high potential scored better on the test than their “unknown” and
“regular” counterparts. Being labeled as leaders resulted in actual improved exam
results.

Do your project a favor and treat all your contributors as if they are the most valu-
able resource. They will respond by becoming yourmost valuable resource, if they
are not already.

Wrapping up, while giving feedback it’s good to:

• Start with an appreciation of the work or comment.
• Phrase ideas as questions when you are not sure that your feedback shows
a clear step forward.

• Be explicit. Online discussions have less bandwidth than in person and
need more context.

• Try to respond to every question and comment.
• If you disagree strongly, consider giving it a moment before responding.
• Don’t assume the audience shares your experience or context. Avoid words
like “basically”, “simply”, “clearly”, etc.

• Review is of the code, not people. Keep this in mind as a contributor too.

Remember: every person knows something you don’t yet know. It will help you
treat everyone with care, making them feel valuable to your project and inspiring
further contributions.

https://en.wikipedia.org/wiki/Pygmalion_effect
http://psycnet.apa.org/journals/apl/67/2/194/

CHAPTER 1. COMMUNITY 8

Expectations and guilt

Maintaining an open source project can provoke some negative feelings that have
proven to be a weight on some maintainers’ shoulders. This difficulty may lead to
burnout and ultimately the abandonment of the project. Some examples:

• GitHub meta-issue to “help open-source maintainers stay sane”
• Jacob “Fat” Thornton’s talk: What Is Open Source And Why Do I Feel So
Guilty?

• docpad maintainer quits due to burn out
• capistrano maintainer quits due to burn out
• Google Talk: How Open Source Projects Survive Poisonous People
• Phillip Roberts’s blog post: Creation and Vulnerability
• Babel.js author describes his burnout
• Basecamp blog post: Open Source Guilt and Passion

Businesses rely on your project. Software projects rely on it. People rely on it. They
ultimately rely on you, the project owner. If you put in three more hours of work
you may save ten people three hours each today, compounding into the future,
and that potentially makes you feel responsible. An unintended regression could
directly affect tens of people (or hundreds, or thousands, or millions). People can
complain about errors or lack of features in a curt way.

In open source nobody owes anything to anyone. If anything, users owemaintain-
ers gratitude for publishing something that was and is useful to them. Your code
is being run in who-knows how many computers and servers. A mistake today
doesn’t undo your previous productivity gains, help, and successes. How to con-
trol emotions is indeed not a topic for this book, but it is important to be aware of
the feelings that may sprout from leading an OSS project, as that in itself should
help.

People’s expectations and needs will be different than what you set for yourself
and your project. You can try to channel them, and they may intersect. Yet some-
times it is best to accept differences. At the end of the day, we should try not worry
about things that are out of our control, while keeping inmind that we contributed
valuable work to fellow humans.

https://github.com/isaacs/github/issues/167
https://www.youtube.com/watch?v=UIDb6VBO9os
https://www.youtube.com/watch?v=UIDb6VBO9os
https://github.com/docpad/docpad/issues/821
https://groups.google.com/forum/#!msg/capistrano/nmMaqWR1z84/hdjAGIGbwdYJ
https://www.youtube.com/watch?v=Q52kFL8zVoM
http://latentflip.com/creation-and-vulnerability/
https://medium.com/@sebmck/2015-in-review-51ac7035e272
https://signalvnoise.com/posts/3349-open-source-guilt-passion

Git & GitHub

Imagine you read your emails, and happily find a patch waiting for your consider-
ation. You open it and start building a mental picture of what is proposed. You
have to:

• Study what is changing and why.
• See if it might have repercussions with other parts of the system.
• Think if you should backport it to previous releases.
• Make it easily reversible for future you (just in case).
• Make it easy (for future you while debugging) to remember and understand
the context and discussion in this patch.

Let’s see how following best Git practices can help with these goals.

Request small, cohesive commits

There are two rules that help with all of the above:

• Keep commits cohesive.
• Keep commits as small as possible.

A pull request is a collection of commits. Each commit should be reviewed. A good
commit may be as small as a one-line change and as big as a change in every file

9

CHAPTER 2. GIT & GITHUB 10

of the entire project, provided it contains no more than one logical change. If it
contains more, the commit should be split.

For example, if a patch fixes a bug and optimizes the performance of a feature,
split it into two separate commits. The implementation of a feature and the cor-
responding tests belong in the same commit, which should not be split.

A small and cohesive commit is easier to review and grasp. Git’s annotate and blame

commands will be more clear about the origin and reason behind each line of the
entire source code. If you find the need to revert the changeset, it is possible to
revert that single commit in an instant, and the project will exist as if that change
wouldn’t have existed in the first place. The same applies if you have to backport
(in git terms, cherry-pick) a fix to previous releases.

Always keep commits as small and cohesive as possible and ask your contributors
to do the same, and the project will be easier to maintain.

Request good commit messages

Let’s say you are investigating a bug reported to your project. After some debug-
ging you narrow the bug down to a change in a conditional:

- if (a < THRESHOLD)

+ if (a <= THRESHOLD)

If you don’t compare a for equality with THRESHOLD the bug seems to disappear,
but before committing the change you want to make sure you understand the
reasoning behind this condition to avoid introducing a regression.

You decide to go back in the history of the project in search of the origin of that
line, to learnwhywas the < operator replaced by <=. You find the change happened
around a year ago, there were no other changes in that commit, and the commit
message reads:

“ allow a to be equal to THRESHOLD

Such a discovery! You were successful in finding the origin of that condition, but it
doesn’t get you any closer to understanding why that change (and this bug) exists.

CHAPTER 2. GIT & GITHUB 11

You are lucky: the author of that change is in the same room as you. In fact, it is
you! Having such a close relationship with the author doesn’t help you understand
the why of this change, or what repercussions undoing it could have. With such
an irrelevant commit message, any reviewer (from the moment this commit was
created many months ago, and into the future) has to drill down to find what the
patch does and how it affects the software.

A more informative message spares that effort for everyone. Every commit mes-
sage can be a potential time sink or serve as never-too-verbose documentation.
An informative commitmessage lets anyone decide if the solution still applies, and
if it’s a good solution to the problem at hand. Also, it can help determine if it’s pos-
sible to find better alternatives. Understanding why something happenedmonths
or years ago becomes possible and efficient.

A good commit message answers three questions:

• Why is this change necessary?
• How does it address the issue?
• What effects does the patch have?

Note the absence of a “what is” type of question. We have the git log for that
already; you can leave a short summary of the “what”, but do elaborate on the
“why”. Other useful notes to add to the end of the commit message are issue
tracker IDs, link to related commits, patches or discussions, etc.

There are style practices that help keeping a helpful log:

• Separate subject from body with a blank line.
• Limit the subject line to 50 characters.
• Capitalize the subject line, and don’t end it with a period.
• Use imperative form in the subject line.
• Wrap the body at 72 characters.
• The subject tells what the commits does, the body explains why.

Tim Pope, renowned creator of several Vim plugins, meta-describes a good mes-
sage in a hypothetical commit message:

http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

CHAPTER 2. GIT & GITHUB 12

Capitalized, short (50 chars or less) summary

More detailed explanatory text, if necessary. Wrap it to about 72

characters or so. In some contexts, the first line is treated as the

subject of an email and the rest of the text as the body. The blank

line separating the summary from the body is critical (unless you omit

the body entirely); tools like rebase can get confused if you run the

two together.

Write your commit message in the imperative: “Fix bug” and not “Fixed

bug” or “Fixes bug.” This convention matches up with commit messages

generated by commands like git merge and git revert.

Further paragraphs come after blank lines.

- Bullet points are okay, too

- Typically a hyphen or asterisk is used for the bullet, followed by a

single space, with blank lines in between, but conventions vary here

- Use a hanging indent

Now, not every single commit requires both a subject and a body. Sometimes a
single line is fine, especially when the change is so simple that no further context
is necessary. For example: “fix a typo in the README”. For these cases you can use
the --message= flag (-m for short) to git commit, which allows writing the message
right from the command line.

When you need to leave a longer explanation, instead of using that flag it’s better
to hook your favorite text editor to git. That way you’ll always have enough space
and your regular toolset for writing what is as relevant as code itself: your commit
message.

Always write commit messages as if you are explaining the change to a colleague
sitting next to you who doesn’t know what is going on.

http://stackoverflow.com/a/2596835/356060

CHAPTER 2. GIT & GITHUB 13

Request good git history

Over the course of a single bug fix, one may create several commits with improve-
ments foundwhile working through it, andwith feedback from code reviews. Once
merged the code may look tidy, but better not look at the sausage factory that’s
buried in git log!

Some people see value in keeping the evolution of the code unchanged, commit
after commit, having the whole messy (but complete) changeset. Assuming each
commit includes an explanation of the rationale behind of it, then history is com-
plete, but that doesn’t mean clear. For a programmer at work, it’s more useful
to understand what the code does and why, than a given contributor’s develop-
ment and learning process. If the author takes the time to send a curated history
rather than the raw version, it’s easier for everyone in the team to understand this
change.

A repository contains every version of the project since it was born, and that
doesn’t necessarily include discussions that happen in chat rooms, hallways, or
GitHub pull requests. From those discussions, decisions arise on what should the
software do and how, and that context is lost unless we explicitly write it into each
commit message. You can encourage this before merging code by asking that:

• Each commit contain a single logical change.
• If the branch history is polluted with messages like “cleanup whitespace”,
“more style changes”, “wip”, etc., commits are squashed together into
meaningful parts.

• Each commit message explain the problem and the solution without using
connectors. If they use connectors, there probably is more than one logical
change, and commit should be split.

• Changesets that are small in scope fit into a single commit. Some may con-
tain more, with each commit being independent of one another.

• Similar rules apply to merging or splitting pull requests as you see fit, to
ease code review.

It is better to squash commits together right before merging and not earlier. That
way, discussion and follow-up commits addressing the feedback stay synchro-
nized, anyone can see how the feature came up to be across the different revi-
sions, and the reviewer always knows what was addressed and what not.

http://robots.thoughtbot.com/git-interactive-rebase-squash-amend-rewriting-history
http://robots.thoughtbot.com/git-interactive-rebase-squash-amend-rewriting-history

CHAPTER 2. GIT & GITHUB 14

Be nice to people, floss every day, and keep your git history clean.

Reject patches

Wikipedia defines legacy code as source code inherited from someone else and
source code inherited from an older version of the software. This means any code
that lands intomaster becomes legacy code. We are effectively someone else after
forgetting the details of a piece of code in twoweeks, and any commit that’s behind
HEAD is literally an older version of the software. Code is a liability and solving
problemswith as little code as possible is almost always a good decision. It doesn’t
matter how exciting it feels to receive a patch: the potential new feature will need
to be taken care of over the course of its lifetime. You will have to keep in mind
one more state the software can be in for every new feature or modification that
gets merged.

We want our project to be useful for the broadest possible audience. It can feel
awkward to say “no” to a legitimate use case or idea. We may think of adding
configuration options to the software so we can take everyone into account, but
that brings in complexity.

To make sure merging a given patch is a good idea, you can ask the following
questions:

• Will you or your team want to maintain it?
• Will the author be reachable for support, answer questions that the com-
munity will have around that feature, or fix related bugs?

• Will you like maintaining that addition?
• Do you see it bringing in more value than cost?

Say “no” when you believe the addition will not be helpful to the project, the team
maintaining it, and by extension, its users.

If you feel like saying “no” but you can’t find theway to do it, remember how leaders
of popular open source projects and organizations work:

https://en.wikipedia.org/wiki/Legacy_code#Modern_interpretations

CHAPTER 2. GIT & GITHUB 15

David Heinemeier Hansson Ruby on Rails
Theo de Raadt OpenBSD

Richard M. Stallman Free Software Foundation
Linus Torvalds Linux

These people are highly opinionated, decisive, even dominant. They are the
“benevolent dictators” of their projects, andmany times they take decisions based
solely on their taste, without the need to reach consensus. They don’t ignore
what other people say, they have strong opinions and stand for them, and they
are open to change those opinions provided relevant facts (mostly!).

Creator of Ruby Yukihiro “Matz” Matsumoto is one of the nicest people on this
planet. Ruby was unheard of until DHH published Rails. While I followMatz’s style,
I count with a few noteworthy sources of inspiration for when I want to say “no”.

Maintaining quality

During code review, there are two types of feedback you can provide:

• High level: about software design, design patterns, anti-patterns, architec-
ture, suggestion of alternative implementations.

• Low level: details like matching coding style with the surroundings of the
file or project, indentation, naming conventions, etc.

A high-level plan is key to the success of the project. Weak foundations can compli-
cate updating or extending the software, which can eventually stall development
altogether.

It might seem that feedback on style is less relevant, as an unnecessary comma or
amisspelled name won’t break a feature. But small discrepancies give the impres-
sion of individual developers working without purpose rather than a teamworking
together toward a common goal. Lack of attention to detail conveys an attitude
that might permeate other aspects of a project like readability, dependency man-
agement, and testing. An inconsistent style is a superficial but notable sign that
people don’t care much about quality.

Kees Keizer and colleagues from the University of Groningen conducted experi-
ments showing that if people observe a certain social norm or legitimate rule was
violated, they are more likely to violate other norms or rules, causing disorder to
spread. This effect is also known as “broken windows”: one broken window in a
building is enough to increase the chances that more will appear.

BramMoolenaar, author andmaintainer of the Vim text editor, suggestsmaintain-
ers to set a precedent:

16

http://www.sciencemag.org/content/322/5908/1681.abstract
http://www.sciencemag.org/content/322/5908/1681.abstract

CHAPTER 3. MAINTAINING QUALITY 17

“ Write nice code. Use white space properly, use good names for
methods, add comments to explain anything that isn’t obvious, etc.
If you write ugly code, anyone who intends to fix a bug or add a
feature will not enjoy their work and likely avoid it next time.

Taking care of software quality at every level keeps maintenance costs low. Poor
structural quality in business applications results in cost and schedule overruns. It
also creates waste in the form of rework. Engineering Researcher Jussi Koskinen
cites studies in Software Maintenance Costs that show the relative cost of maintain-
ing software and managing its evolution represents more than 50% of its total
cost.

Let’s see how we can control these costs.

Adopt a style guide

A programming style guide is a set of rules used while writing code that estab-
lishes and enforces style to improve communication, helping programmers read
and understand source code. It ensures consistency within a file and across mul-
tiple files. When a group of people adhere to the same guidelines, all the files feel
familiar to everyone.

You can write the coding standard for your project or adopt an existing one, and
follow it. Any guideline will be useful, as any one of them will handle a myriad of
little decisions for you and your team so you don’t need to think about them too. In
many cases it doesn’t matter what decisions these are; the point is to avoid having
to discuss them frequently. Code ought to conform with the guidelines, leaving
little room for opinions and bike-shed type of discussions. Guidelines save time
for you to focus on the deeper concepts of a given changeset and the high-level
overview of the code under review.

Here is a list of three sample style guides and coding standards:

• Most popular Ruby style guide
• Symfony’s PHP coding standard
• thoughtbot style guides for different languages and frameworks

https://web.archive.org/web/20120313070806/http://users.jyu.fi/~koskinen/smcosts.htm
https://github.com/bbatsov/ruby-style-guide
http://symfony.com/doc/current/contributing/code/standards.html
https://github.com/thoughtbot/guides/tree/master/style#style

CHAPTER 3. MAINTAINING QUALITY 18

Public discussions in pull requests shape these standards, deciding not only on
superficial style but also fostering best practices whenever possible. For example,
in Ruby it’s better to avoid rescuing the general Exception class, as it traps OS sig-
nals to exit a process, requiring to send a non-catchable KILL to end execution of
the script. thoughtbot guidelines advise against that practice. People who follow
a popular guideline might avoid rough edges even while they are not conscious of
them.

If you are working on side projects though, you may throw away conventions and
ignore everything anyone has ever said. Because, as Harrison Shoff delightfully
answers in a critique of his guidelines, lack of process is what gets us to new dis-
coveries. Not everything has to feel cookie cut, particularly for explorations.

Style guides can help polish reliability, performance, security, maintainability, and
size of your software. You can research the reasoning behind each rule, and an-
alyze if they apply to you and your team. Even without the need of learning all
this context you can still achieve healthy results. Follow the rules that hundreds
of people from your community have shaped, and break them when they don’t
make sense any longer for you.

Use static analysis tools

The existence of a document that specifies a process is not enough for people
to follow it. Take a moment to let this sink in. You will still continue receiving
contributions in the most creative styles you’ve ever seen, and you might not be
happiest about the originality contributors show.

If you receive a contribution with guideline violations that you’d rather see fol-
lowed, you have the following options:

1. Not to merge the changes. Unfortunately, this might come off as rude to
the contributor(s). It also doesn’t help the project if the code changes are
functionally useful.

2. Ignore the guidelines and merge anyway. It leads to sloppy looking code.

3. Merge and apply style changes yourself. This is time-consuming and will
clutter the git history with stylistic rather than functional changes.

https://github.com/airbnb/javascript/issues/102#issuecomment-28157738
https://github.com/airbnb/javascript/issues/102#issuecomment-28157738

CHAPTER 3. MAINTAINING QUALITY 19

4. Comment on every violation, working with the author until the changeset is
good. This is time-consuming and might feel awkward.

5. Do nothing, and let a robot comment on every style violation in virtually no
time, consistently, and with no emotions.

Ruby has a tool called rubocop that exposes style violations. Hound CI is a prod-
uct that uses rubocop, and it comments in the changed lines of patches that do
not conform to the style guides. Hound is consistently the first reviewer of any
patch in the projects that set it up. Because it’s a bot, it avoids the potentially awk-
ward situation of nitpicking style violations over a contribution. People rarely get
offended by a robot dog. It is indeed waiting to criticize your style, but it does so
always, with the same speed, consistency and lack of passion. People can handle
Hound items ahead of your review, leaving code that reads as if anyone on your
team had written it.

Other useful static analysis tools are:

• For JavaScript code, Douglas Crockbford’s tricky to please JSLint, or the con-
figurable fork JSHint.

• RIPS for PHP security analysis.
• Brakeman for Rails security analysis.
• Flog for Ruby code complexity.
• Flay for Ruby code duplication.
• Wikipedia list of static analysis tools.

Let machines do what they are good at, and humans do what machines can’t do.
Stop thinking about how code is changing to focus better on what is changing.

Request regression tests for every change

Testing helps verify whether, after introducing new behavior or updating the
project, the change has had the intended effect. Tests help us gain confidence
that the project:

• Meets its requirements.

http://jslint.com/
http://jshint.com/
http://rips-scanner.sourceforge.net/
http://brakemanscanner.org/
http://ruby.sadi.st/Flog.html
http://ruby.sadi.st/Flay.html
https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis

CHAPTER 3. MAINTAINING QUALITY 20

• Responds correctly to all kinds of input.
• Performs its functions within an acceptable time frame.
• Is usable.
• Can be installed and run in its intended environments.

Testing cannot establish that a product functions well under any condition, but
it can determine when it does not function properly under specific conditions. A
failing test is the most specific description of an issue a project can get. In an ideal
world, wewould have a failing test accompanying the natural language description
of every issue.

These tests in turn serve as regression tests. A regression happens if a change has
unintended consequences over other parts of the project. Having tests covering
each bug fix protects us in an automated way from reappearing bugs, making the
software more reliable.

Run tests on every commit

Running tests before committing to master helps avoid one developer’s work
breaking another copy of the software. Continuous Integration (CI) originally
described a workflow in which every developer would run all unit tests in their
local environment and verify they passed before sharing changes.

Nowadays build servers automatically run all tests after every commit, and report
results to the authors closing a tight feedback loop. In addition to automated tests,
CI environments can implement continuous processes for general quality control.
Such processes run additional static and dynamic tests, measure and profile per-
formance, extract and format documentation from the source code, and facilitate
manual QA processes. This continuous application of quality control aims to im-
prove visibility over the project’s quality.

Travis CI is an open source continuous integration service for projects hosted on
GitHub. It’s free for open source projects. Like similar services, it automatically
detects new commits in any branch, builds the project and runs its tests. It notifies
the developer about the success or failure of the run upon completion.

Travis CI will test all combinations you specify of runtimes, dependency versions,
and environment variables.

https://travis-ci.com/

CHAPTER 3. MAINTAINING QUALITY 21

An example configuration file for a ruby library might be:

language: ruby

rvm:

- 2.2

- 2.3

env:

- DATABASE=mongodb

- DATABASE=postgresql

- DATABASE=redis

gemfile:

- Gemfile

- Gemfile.rails42

This results in a 2×3×2 build matrix that will validate your project runs in the many
combinations of rails and ruby versions, and databases your users may have.

By automating as many quality controls as possible in a CI environment, you will
make sure there is visibility into the project’s different quality measurements. This
will help your team and community maintain them more effectively.

Choose your own values

When you start a new project you follow a set of values and priorities, whether you
are conscious about it or not. You produce work with a belief, taste or deliberate
decision on what is most important for your project and community, and take
decisions based on that.

A list of priorities for your project to follow can be:

• Reliability
• Security
• Usability

CHAPTER 3. MAINTAINING QUALITY 22

• Design
• Code quality
• Popularity
• Performance
• Cleverness

A prioritization of values you might want for your community can be:

• Collaboration
• Friendliness
• Experience
• Low barrier of entry
• Stability
• Numbers (lines of written code, commits added, etc.)

A developer will like it if the object model is close to real world domain concepts
and code is loosely coupled. A customer may think a product is good if it can be
understood and used in less than aminute. A product owner will find the software
healthy if it’s profitable. Different people see the same product through different
lenses. What’s irrelevant to one project is essential to another.

As the project’s maintainer, you’re in a unique position to define the values of your
project’s community. In this chapter we’vemainly discussed values related to code
quality: adhering to a style guide, maintaining test coverage, using CI, and so on.
A project that doesn’t honor these values is less likely to succeed, but a project
certainly won’t succeed if no one wants to work on it. Make sure that the values
you choose to cultivate resonate with potential contributors and help make the
project something you can be proud of.

Documentation

README

The first interaction new users have with your project is its website or README file.
Either document acts as the “landing page”, and serves as an onboarding ramp for
users and contributors alike.

People discovering your software need to learn the essential information. In this
chapter many different documents are covered with specific pieces of knowledge.
Sometimes it makes sense to condense certain documents into the README file,
while in other cases it’s better to keep them separate and link to them from this
file or website.

The README file should cover:

• Project name and brief description
• Mission statement
• Communication channels
• Installation instructions
• Usage examples
• Running tests
• High-level overview
• API documentation
• License
• Contributing

23

CHAPTER 4. DOCUMENTATION 24

The project name is self-explanatory. The mission statement should be short and
precise. You can assume a minimally informed reader, as someone who doesn’t
know what key concepts used by your project mean probably won’t understand
the rest of the document anyway. After reading your mission statement users
of the library should be well informed about how useful the project is to their
needs, helping them take the decision of learning more about it or looking for
better suited alternatives.

“README” is a deliberately capitalized filename to make it easy to identify, draw-
ing users who might not know where to find documentation to read it. Also, in
Linux/Unix based environments, the ls command lists files according to their ASCII
order by default, giving relevance to the README over the lowercase names in the
same directory.

Three examples of excellent README files to draw inspiration from are:

• Sinatra’s, which documents the API in its entirety. README translations are
versioned and included in the root path of the project.

• FactoryGirl’s shows some very basic details and links out to the many rele-
vant resources.

• SimpleForm’s fully documents the API too.

People might be visiting your project’s page because they have a problem. If you
know of common issues that happen while getting started, call that out in a sec-
tion of its own and provide a solution or workaround. A great example of one such
issue is capybara-webkit’s dependency that cannot be satisfied by the project’s en-
vironment. thoughtbot added a notice about this particular installation step in the
README.

Help people use, like or contribute to your software with a welcoming, informative
landing page.

Overview

Imagine you find a project that seems good for your goals, and want to see in
more specific detail if you can make it work, making configuration adjustments
along the way. You will have questions like: “what are the bigger modules for this

https://github.com/sinatra/sinatra#sinatra
https://github.com/thoughtbot/factory_girl
https://github.com/plataformatec/simple_form
https://github.com/thoughtbot/capybara-webkit#qt-dependency-and-installation-issues

CHAPTER 4. DOCUMENTATION 25

software?”, “how do these pieces interact with each other?”, and “how does this
submodule exactlywork?”. You don’t yetwant to dig deep into the code but instead
get a bird’s eye view of the architecture. These are the questions the Overview
document covers.

The overview doesn’t need to show every file or subdirectory of your project, only
the most important concepts. Never assume that what one script does, how the
files in a directory interact with each other, or where to find a piece of code is
always clear to a newcomer. Making such assumptions makes you the onboard-
ing bottleneck, as you will personally need to answer questions, and you will not
always be as readily available as documents freely published on the internet.

The overview could start off explaining a “top level” explanation of the project’s
structure, and nothing more. You can go into detail as you have more availability,
but a handful of questions that are more frequently asked should be enough to
start with. As you answer questions in issue trackers or mailing lists, you can fill
in gaps in your Overview document. The concrete questions will motivate you to
write this piece of documentation, and they will also guide you through the paths
that are in need of more clarification.

If you use other libraries or frameworks, the Overview section is a good place to
link to their documentation as well.

Two notable Overview document examples:

• subversion has a web page with sections: Participating in the community,
Theory and documentation, Code to read, Directory layout, Branch policy,
Documentation, Patch submission guidelines.

• OpenHatch describes in one paragraph each different subsystem and links
to external resources for each.

Installing

The Installing document details every step needed for the project to run on a new
computer. It details how to find, install, compile, require, import and export its
dependencies in supported environments.

The repository should also contain a scripted version of these details, which au-
tomates required steps for newcomers. A Makefile or general bin/setup script

https://subversion.apache.org/docs/community-guide/general.html
http://openhatch.readthedocs.org/en/latest/getting_started/project_overview.html

CHAPTER 4. DOCUMENTATION 26

should set up dependencies and run tests to make sure the project is ready to be
worked on. Specify at the beginning of your README how to run this script, so that
in no time a new user can interact with the software.

Installation instructions are an essential component of documentation for a soft-
ware project, because even people with the intentions, skills and curiosity to par-
ticipate will struggle setting up a project’s dependencies. No matter how much
stamina they have to work through technical problems, if they can’t install the
software, they will be impeded from running, using and applying changes to your
project.

Make the setup as easy as you can, lowering the barrier of entry for users and
contributors alike.

News

When people upgrade a project they need to know what has changed. What are
the relevant changes between version X and Y? What are new APIs? How did ex-
isting APIs change? Did it drop any API that is being used?

A NEWS or HISTORY file in the root path for the project lists user-visible changes
that have been happening and you consider worth mentioning. This is not a list
of every commit that happened in between versions; a user doesn’t need to know
a typo in the documentation was fixed, or whitespace inconsistencies where ad-
dressed. User facing changes are enough.

GNU coding standards suggest adding the relevant changes for each release to the
top of the file, detailing the version they pertain to, and the date of each release.
They also advise not to discard old items, so that a user upgrading can see what
has changed since any previous version.

You can see an example of informative HISTORY file in rack’s codebase.

Code of Conduct

A code of conduct details principles, standards, or rules of behaviour that guide the
decisions and procedures of the team. It informs the members of the group with

https://www.gnu.org/prep/standards/html_node/NEWS-File.html
https://github.com/rack/rack/blob/master/HISTORY.md

CHAPTER 4. DOCUMENTATION 27

different social values and communication styles of expected behavior, ensuring to
respect the rights of allmembers. The document needs to inform in clear language
what is expected of eachmember, and provide amechanism for resolving conflicts
in the community when they arise.

Contributor-Covenant.org is a sample code of conduct for open source projects. It
links to external resources on code of conducts, and the discussions and decisions
are documented in its GitHub repository.

Unlike code, where it is expectable to have bugs or unexpected outcomes, it’s bet-
ter to proactively put policies in place when dealing with people. Misconduct is to
be actively prevented.

Contributing

A CONTRIBUTING file in the root directory for the project explains how collabora-
tors can contribute their work to the project. Some instructions to specify follow:

• Who are the team members, and how to contact them
• How to update documentation
• How to answer questions
• How to report bugs
• Link to the style guide
• Link to the code of conduct
• Where to discuss new features
• How to submit patches

It should be very clear in this document that security issues shouldn’t be brought
up in public channels but on private ones, to prevent malicious hackers (“black
hats”) from exploiting vulnerabilities before fixes are released. We’ll speak more
about security considerations in the “Versioning & Releasing” chapter of this book.

GitHub acknowledges the existence of a CONTRIBUTING.md file in the root path of
the repository, and adds a link to it when a contributor visits the form to file a new
issue or submit a pull request.

http://contributor-covenant.org/
https://github.com/ContributorCovenant/contributor_covenant

CHAPTER 4. DOCUMENTATION 28

You may add whatever you find useful to tell people thinking of contributing to
your project, before or while they are doing so. For example, the devise “Bug re-
ports” wiki page goes into great detail on what constitutes a bug in their project,
and how it should be reported. By asking people to double check it is amalfunction
before submitting a report, and that they have enough information for maintain-
ers to take action on it, they keep the large amounts of issues better curated. This
helps the team focus on the most important issues to be addressed.

Youmight want to define in this file a section titled “your first contribution” to ease
the onboarding process for newcomers.

Releasing

Like the “Installing” document, this natural language description of the release pro-
cess for a new version should have an accompanying script that executes those
commands.

Example steps for releasing a new version for an open source project are:

1. Checkout the branch you want to make a release of (typically master)
2. Update the project’s version in the source code and documentation accord-

ingly
3. Update NEWS.md to reflect the changes since the previous release
4. Commit the changes
5. Tag the release commit and cryptographically sign the tag (git tag -a -s vVERSION)
6. Publish the release commit and tag (git push && git push --tags)
7. Build and publish the package (make build)
8. Announce the new release, making sure to say a big “thank you” to contrib-

utors who helped with this version.

Ruby on Rails has a great example of a releasing document.

Wiki

The wiki is a perfect place for a FAQ section for the software. You can start it with
a mostly blank FAQ template with a few questions and answers, so there will be

https://github.com/plataformatec/devise/wiki/Bug-reports
https://github.com/plataformatec/devise/wiki/Bug-reports
https://github.com/rails/rails/blob/master/RELEASING_RAILS.md

CHAPTER 4. DOCUMENTATION 29

an obvious place for people to contribute questions and answers after the project
is under way.

As the maintainer you don’t personally need this documentation, because you al-
ready understand most of your project, if not every corner of it. It can be difficult
to see things from a newcomer’s point of view, and describe steps that seem ob-
vious to you. You will need the users coming up with their questions, and freely
updating the documentation as they see fit. A wiki is the perfect implementation
of such a protocol.

As a result of its independence and complete freedom to change, it will have differ-
ent styles andways of writing. Its absolutely open nature leaves room for potential
vandalism that won’t be immediately visible. It will also probably go out of date as
you release new versions of the project, because it’s not versioned and tested as
code is. Make sure the intended audience is clear at all times to all editors. Docu-
ment the wiki guidelines in the wiki itself and point people to them.

You will want to curate it as much as you do the code and its documentation, with
a frequency that makes the most sense to you and your community. Make sure
to set the right expectations of relevance for the wiki, so users know howmuch to
rely on it, and feel comfortable editing it when they know it is not up to date.

In any piece of documentation in your project there shouldn’t be words like ob-
viously, basically, simply, easy, etc. In the case where it’s not obvious they might
trigger feelings of vulnerability (“why didn’t I already know this?”). And in the case
where it was indeed a known fact, the word doesn’t add any information, and we
can use less words to convey the same message, resulting in a stronger sentence.

Technical writing is still writing. As if you were writing an essay or blog post, you
should strive to grab the attention of your reader early on. Don’t make your users
think more than they need, onboard them instead with a great landing page that
allows them to drill into the details they need.

Licenses

When we produce work, the country’s law gives us rights over our creation. We
are granted exclusive rights to its use and distribution so that we can receive com-
pensation for our “intellectual property”. Under the Berne Convention, whichmost
countries have signed, anything written down is automatically copyrighted, includ-
ing programs.

Before copyright laws existed, whoever created non-material economic wealth
had to protect their creations to be able to seize value from them. For example,
they could publish a small subset of their creations and then request payment be-
fore they published more. Another option was for authors to claim a substantial
sum one-off payment from, say, the printer of their book before publishing it.

With copyright in place, authors, photographers, programmers, and other intel-
lectual workers can publish their creations immediately and wait for licensing re-
quests from people who want to use or re-publish their works.

A piece of software that doesn’t carry a license is not free software until it has been
explicitly and validly placed in the public domain. Free software developers prefer
to explicitly allow the use,modification and redistribution of their work so that they
benefit from peer review, testing and extensions that the emerging community
provide. By default, copyright law doesn’t allow that, and we need to use those
very same laws to guarantee collaborative workflows.

In this chapter we explore the different ways we can allow that.

30

CHAPTER 5. LICENSES 31

Public domain

Works in the public domain are those whose intellectual property rights have ex-
pired or are inapplicable. The term does not commonly apply to situations where
the creator retains residual rights, in which case use of the work is referred to as
“under license” or “with permission”.

Copyrighted work may not be used for derivative works without permission from
the copyright owner, while public domain work can be freely used for derivative
works without any permission. The copyright in a derivative work covers only the
additions and changes appearing for the first time in the work, it does not extend
to any preexisting work.

The simplest way tomake a program free software is to put it in the public domain,
uncopyrighted. Being in the public domain is not a license; it means thematerial is
not copyrighted, andno license is needed. This allowspeople to share the program
and their improvements, and it allows people to use or convert the program into
proprietary software if so they want.

A Public Domain License: CC0

CC0 is a public domain dedication from the Creative Commons non-profit organi-
zation. A work released under CC0 is dedicated to the public domain to the fullest
extent permitted by law. If that is not possible for any reason, CC0 also provides
a permissive license as a fallback.

Code written by employees of the US government is a special exception since US
copyright law explicitly puts that in the public domain. This does not apply toworks
that the US pays a company to write. It also does not apply to other countries,
many of which do allow the state to have a copyright on government writings.

Copyleft licenses

“Copyleft” (a play on the word “copyright”) is the practice of using copyright law to
offer the right to distribute copies andmodified versions of a creation, and requir-
ing that the same rights be preserved in modified versions of the work. It makes

https://creativecommons.org/choose/zero/

CHAPTER 5. LICENSES 32

the work freely available to be modified, requiring all modified and extended ver-
sions to remain free as well.

The Free Software Foundation (FSF) quotes four freedoms that a software license
should follow to be considered “free”:

• freedom to use the work
• freedom to study the work
• freedom to copy and share the work with others
• freedom to modify the work, and the freedom to distribute modified and,
therefore, derivative works

These freedoms don’t ensure that a derivative work will be distributed under the
same terms. In general, copyright law is used by an author to prohibit recipients
from reproducing, adapting, or distributing copies of the work. In contrast, an
author may give every person who receives a copy of some work permission to
reproduce, adapt or distribute it and require that any resulting copies or adapta-
tions are also bound by the same licensing. Using the copyright laws to ensure
these freedoms are kept is called “Copyleft”.

Supporters of Copyleft licenses don’t want software they write with the intention
for its users to be able to study, modify and share it become closed. Instead of
relying on intrinsicmotivation or goodwill for keepingwork and its derivatives free,
by the use of Copyleft licenses a project retains the right to prosecute entities that
don’t publish their derivative works. These type of licenses “restricts restrictions”,
enforcing the continuation of the license terms into the future.

GPL

TheGNUGeneral Public License (GPL) grants the recipients of a computer program
the rights of the Free SoftwareDefinition and uses copyleft to ensure the freedoms
are preserved whenever the work is distributed, even when the work is changed
or added to. Commercial use and derivation by anyone is permitted, as long as the
terms of the license are honored. Proprietary derivatives by third parties are not
possible unless the copyright holder grants permission. The first General Public
License was applied to the GNU Compiler Collection in 1987.

https://www.gnu.org/licenses/gpl.html

CHAPTER 5. LICENSES 33

Researcher and programmer David A. Wheeler argues that the copyleft provided
by the GPL was crucial to the success of Linux-based systems, giving contributors
to the kernel the assurance that their work would remain free, rather than being
used by software companies that could potentially give nothing back to the com-
munity.

The terms of the GPL can be enforced in court. For example, Free Software Foun-
dation, Inc. v. Cisco Systems, Inc. was a lawsuit initiated by the FSF against Cisco
Systems, contending that code it held the copyright to was found in several Linksys
models, without providing complete copies of all source code and their modifica-
tions. The parties reached a settlement which includes Cisco appointing a director
to ensure Linksys products comply with free software licenses, to notify previous
recipients of their products containing FSF programs of their rights under the GPL,
and Cisco making an undisclosed financial contribution to the FSF.

The rights an author keeps through the GPL can imply a potential conflict of in-
terest with corporations. As an example, the GPL License is incompatible with
application distribution systems like the Mac App Store, because of the right “to
make a copy for your neighbour”, which is violated by the Apple DRM restrictions
that prevent copying of paid software. The obligation to release derived source
code for companies developing closed-source software is a deal breaker from the
start.

LGPL

The GNU Lesser General Public License (LGPL) is a free software license, but not
strongly copyleft because it permits linking with non-free modules. It allows de-
velopers and companies to use and integrate LGPL software into their own (even
proprietary) software without being required to release the source code of their
software parts.

The license requires that only the LGPL software-parts bemodifiable by end-users
via source code availability. For proprietary software, LGPL parts are usually in the
form of a shared library so that there is a clear separation between the proprietary
and LGPL parts.

The LGPLwas developed as a compromise between the strong copyleft of the GNU
General Public License andmore permissive licenses such as the BSD licenses and
the MIT (X11) License.

http://www.dwheeler.com/blog/2006/09/01/#gpl-bsd
https://en.wikipedia.org/wiki/Free_Software_Foundation,_Inc._v._Cisco_Systems,_Inc.
https://en.wikipedia.org/wiki/Free_Software_Foundation,_Inc._v._Cisco_Systems,_Inc.
https://www.gnu.org/licenses/why-not-lgpl.html

CHAPTER 5. LICENSES 34

The license uses terminologymainly intended for applications written in the C pro-
gramming language or its family. Franz Inc. published its own preamble to the
license to clarify terminology in the Lisp context. In object-oriented languages,
subclassing is considered a derivative, and as such, permitted.

Permissive licences

Copyleft and permissive type of licenses were born roughly at the same time, in
late 1980s. Berkeley Software Distribution (BSD) was a Unix operating system
derivative developed and distributed by the University of California, Berkeley. The
project began in 1977; in June 1986 4.3BSDwas released. Until then, all versions of
BSD incorporated proprietary AT&T Unix code and were, therefore, subject to an
AT&T software license. Source code licenses had become very expensive, and sev-
eral outside parties had expressed interest in a separate release of the networking
code, which had been developed entirely outside AT&T and would not be subject
to the licensing requirement. This led to Networking Release 1 (Net/1), which was
made available to non-licensees of AT&T code and was freely redistributable un-
der the terms of the original BSD free software license. It was released in June
1989.

A user could release the code modified or unmodified in source or binary form
with no accounting to Berkeley. The only requirements were that the copyright
notices in the source file be left intact and that products that incorporated the
code include in their documentation that the product contained code from the
University of California and its contributors. Although Berkeley charged a $1000
fee to get a tape, anyone was free to get a copy from somebody who already had
it. Indeed, several large sites put it up for anonymous FTP shortly after it was
released, and even though the code was freely available, several hundred organi-
zations purchased tapes, which helped to fund the Computer Systems Research
Group at Berkeley and encouraged further development.

A permissive free software licence has minimal requirements about how the soft-
ware can be redistributed. Such licenses therefore make no guarantee that future
generations of the software will remain free. The permissive nature of the BSD
license has allowed many other operating systems, both free and proprietary, to
incorporate BSD code. For example, Microsoft Windows has used BSD-derived
code in its implementation of TCP/IP, and bundles recompiled versions of BSD’s

http://opensource.franz.com/preamble.html
http://opensource.franz.com/preamble.html
https://www.gnu.org/licenses/lgpl-java.html

CHAPTER 5. LICENSES 35

command-line networking tools since Windows 2000. Also Darwin, the system on
which Apple’s Mac OS X is built, is a derivative of 4.4BSD-Lite2 and FreeBSD.

People who advocated free software but disagreed that it was a social impera-
tive began around 1998 using the term “open-source software” and presenting it
as having technical advantages. They felt that software freedom was primarily a
practical matter rather than an ideological one, and concluded that FSF’s social
activism was not appealing to companies like Netscape and looked for a way to
rebrand the free software movement to emphasize the business potential of the
sharing of source code.

Despite the fundamental philosophical differences between the free software
movement and the open source movement, the official definitions of free soft-
ware by the Free Software Foundation and of open source software by the Open
Source Initiative refer to the same software licenses, with a few minor exceptions.
While stressing the philosophical differences, the Free Software Foundation
comments:

“ The term “open source” software is used by some people to mean
more or less the same category as free software. It is not exactly the
same class of software: they accept some licenses that we consider
too restrictive, and there are free software licenses they have not
accepted. However, the differences in extension of the category are
small: nearly all free software is open source, and nearly all open
source software is free.

— Free Software Foundation,

Compared with the Public Domain, Permissive licenses often do stipulate some
limited requirements, such as that the original authors must be credited (attribu-
tion). If a work is truly in the public domain, this is usually not legally required.

Apache

The Apache License does not require a derivative work of the software to be dis-
tributed using the same license. It still requires the application of the same license
to all unmodified parts and, in every licensed file, any original copyright, patent,

https://www.gnu.org/philosophy/categories.html
http://www.apache.org/licenses/LICENSE-2.0

CHAPTER 5. LICENSES 36

trademark, and attribution notices in redistributed codemust be preserved. In ev-
ery licensed file changed, a notification must be added stating that changes have
been made to that file.

BSD License (modified)

The original BSD License (modified by removal of the advertising clause) allows
unlimited redistribution for any purpose as long as its copyright notices and the
license’s disclaimers ofwarranty aremaintained. The license also contains a clause
restricting the use of the names of contributors for endorsement of a derivedwork
without specific permission.

This and the following permissive licenses we’ll mention are short and clear
enough to be quoted verbatim:

Copyright (c) YEAR(S) COPYRIGHT-HOLDERS NAME AND EMAIL ADDRESS

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice,

this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

* Neither the name of the <organization> nor the names of its contributors

may be used to endorse or promote products derived from this software

without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"

AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY DIRECT,

INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY

https://www.gnu.org/philosophy/bsd.en.html

CHAPTER 5. LICENSES 37

OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,

EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The last paragraph is the warranty disclaimer clause, which repudiates all war-
ranties not expressly provided. The software is provided “as-is” with any faults, so
that licensors are not liable.

MIT License (X11)

The MIT License (X11) permits reuse within proprietary software provided all
copies of the licensed software include a copy of the MIT License terms and the
copyright notice. Such proprietary software retains its proprietary nature even if
it incorporates software under this license. Its template follows:

Copyright (c) YEAR(S) COPYRIGHT-HOLDERS NAME AND EMAIL ADDRESS

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the “Software”), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all

copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

SOFTWARE.

CHAPTER 5. LICENSES 38

ISC License

The ISC License is a permissive free software license written by the Internet Soft-
ware Consortium. It is functionally equivalent to the simplified BSD and MIT li-
censes, with language that was deemed unnecessary by the Berne convention re-
moved. Initially used for ISC’s software releases, it has since become the preferred
license of OpenBSD since 2003. Shorter than theMIT License, its template follows:

Copyright (c) YEAR(S) COPYRIGHT-HOLDERS NAME AND EMAIL ADDRESS

Permission to use, copy, modify, and/or distribute this software for any

purpose with or without fee is hereby granted, provided that the above

copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED “AS IS” AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH

REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,

INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM

LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR

OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR

PERFORMANCE OF THIS SOFTWARE.

Dual Licensing

Copyleft licenses like GPL can be used as part of a dual licensed business model,
whereby owners release the code under a copyleft license, but can also sell per-
copy exclusive licenses to organizations that want to use or redistribute the soft-
ware under proprietary terms.

For software released under a copyleft open source license, such termswould nor-
mally be incompatible, but the licensor can still permit it because as the copyright
holder, they are the only ones who could conceivably sue for copyright infringe-
ment, and thus they can agree for a fee not to sue. This way, clients get permission
to redistribute the software under terms that would otherwise be incompatible
with its open source license.

CHAPTER 5. LICENSES 39

When implementing dual-licensing, owners should incorporate code contributions
only from contributors who have signed a sufficiently strong contributor agree-
ment as to be allowed to relicense that contributor’s code.

Other permissive (and informal) licenses

In the United States, informal licenses are supposed to be interpreted based on
what the author intends. That makes them non-copyleft free software licenses, as
they don’t formally keep the derivatives under the same license clause. Many other
countries have amore rigid approach to copyright licenses. There is no tellingwhat
courts in those countries might decide an informal statement means, or if it is a
license at all.

An example follows:

Do What the Fuck You Want to Public License

DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSE

Version 2, December 2004

Copyright (C) 2004 Sam Hocevar <sam@hocevar.net>

Everyone is permitted to copy and distribute verbatim or modified

copies of this license document, and changing it is allowed as long

as the name is changed.

DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. You just DO WHAT THE FUCK YOU WANT TO.

There is suggested copy in the FAQ for a no warranty clause that should be added
for software.

http://wiki.civiccommons.org/Contributor_Agreements
http://wiki.civiccommons.org/Contributor_Agreements
http://www.wtfpl.net/about/
http://www.wtfpl.net/faq/

Versioning & Releasing

Through versioning, software is assigned names or numbers to its unique states
of development. These numbers are assigned in increasing order and correspond
to new developments in the project.

In systems with many dependencies, releasing new package versions can be chal-
lenging. When dependency specifications are too tight, version lockmight happen,
the inability to upgrade a package without having to release new versions of de-
pendent packages. When dependency specifications are too loose, more future
versions might be assumed to be compatible than desired. “Dependency hell”
happens when version lock or promiscuity prevents a project from safely moving
forward.

Software is often tracked using two different software versioning schemes: an in-
ternal version number that increments many times in a single day, such as a revi-
sion control number, and a released version that typically changes far less often,
such as Semantic Versioning or a project code name.

Semantic Versioning

Semantic Versioning (SemVer) is a standard that defines rules for changing
software version numbers, intended to minimize the pitfalls of version lock and
promiscuity. Under this scheme, version numbers and the way they change
convey meaning about the underlying code and what was modified from one
version to the next.

40

http://semver.org/

CHAPTER 6. VERSIONING & RELEASING 41

Semantic Versioning uses a three-part number, MAJOR.MINOR.PATCH. They are in-
cremented according to the following rules:

• MAJOR for breaking changes (backward incompatible changes)
• MINOR for new features (backward compatible additions)
• PATCH for bugfixes (backward compatible changes)

A change is backward compatible if it’s API compatible with the last release.

Additional labels for pre-release and build metadata can be used after the PATCH

number.

For example, software that relies on version 2.1.5 of an API is compatible with
version 2.2.3, but not necessarily with 3.0.1.

SemVer provides a shared language for library authors and users. It simplifies
the upgrade process in most cases, and it makes maintainers think twice before
breaking their APIs.

SemVer might sound simpler than it is, though. Jeremy Ashkenas, author and
maintainer of CoffeeScript, backbone.js, and underscore.js among others, states
that SemVer is an oversimplification of an inherently human problem:

“ If your package has a minor change in behavior that will “break” for
1% of your users, is that a breaking change? Does that change if the
number of affected users is 10%? or 20? How about if instead, it’s
only a small number of users that will have to change their code,
but the change for them will be difficult? — a common event with
deprecated unpopular features.

Ultimately, SemVer is a false promise that appeals to many develop-
ers— the promise of pain-free, don’t-have-to-think-about-it, updates
to dependencies. But it simply isn’t true.

For end user programs, versioning rules don’t matter as much. You might have
lost track of what version your web browser is. MAME doesn’t intend to release a
version 1.0 of their emulator, with the argument that it will never be truly “finished”
because there will always be more arcade games. Version 0.99 was followed by
version 0.100. After eight years of development, eMule reached version 0.50a.

https://gist.github.com/jashkenas/cbd2b088e20279ae2c8e
https://gist.github.com/jashkenas/cbd2b088e20279ae2c8e
http://mamedev.org/oldrel.html

CHAPTER 6. VERSIONING & RELEASING 42

Releasing new versions can be a powerful marketing move. Who doesn’t like to
hear of shiny new releases with new features for Christmas or on an annual con-
ference? It should be easy to talk about it too! “Have you heard of version 5? They
just announced it! Grab it while it’s hot!” There can also be branding or political
meaning in version changes.

Inform the version in the package, in the documentation, and also in the source
code itself, so that it can be read by running software. This way, a developer using
the library can access it dynamically, and write software compatible with different
versions of your project.

Publishing a new release

1. Checkout the branch you want to make a release of (typically master)
2. Update the project’s version in the source code and documentation accord-

ingly
3. Update NEWS.md to reflect the changes since the previous release
4. Commit the changes
5. Tag the release commit and cryptographically sign the tag (git tag -a -s vVERSION)
6. Publish the release commit and tag (git push && git push --tags)
7. Build and publish the package (make build)
8. Announce the new release, making sure to say a big “thank you” to contrib-

utors who helped with this version.

There is no technical requirement to tag releases, but if youneed to refer to version
2.2.7 any time from now, it’s easier to use the version number than to hunt for the
corresponding commit’s hash.

Once published, a release does not change.

We published a template document detailing the steps to release a new rubygem
in GitHub.

https://en.wikipedia.org/wiki/Software_versioning#Political_and_cultural_significance_of_version_numbers
https://en.wikipedia.org/wiki/Software_versioning#Political_and_cultural_significance_of_version_numbers
https://github.com/thoughtbot/templates/blob/master/RELEASING.md
https://github.com/thoughtbot/templates/blob/master/RELEASING.md

CHAPTER 6. VERSIONING & RELEASING 43

Maintenance releases

You can maintain diverging major versions of your project and release them in-
dependently by keeping as many release branches as versions you need to keep
track of. If you release 1.1, 1.2, and then 2.0, and you still need to support the 1.x
series with security fixes, you’d need a branch to put the maintenance releases on
for them.

The Pull Requests you receive will typically have the main master branch as the
base, but if they target a previous version, they’d branch off of the corresponding
base branch, v1.2-stable for instance.

Release version 1.0

Determiningwhen a project can be considered stable isn’t amatter of time butma-
turity. Most projects eventually reach a point where significant changes become
less frequent, and the development direction becomes clearer.

You might have your definition of “stable” for your project. For instance, if you
have a clear picture of the problem you are trying to solve and the steps needed
to solve successfully, you might call it ready when you complete such steps.

In his Producing Open Source Software book, Karl Fogel states we shouldn’t be
afraid of the public scrutiny that comes with an official release:

“ Don’t be afraid of looking unready, and never give in to the tempta-
tion to inflate or hype the development status. Everyone knows that
software evolves by stages; there’s no shame in saying “This is alpha
software with known bugs. It runs, and works at least some of the
time, but use at your own risk.” Such language won’t scare away the
kinds of developers you need at that stage. As for users, one of the
worst things a project can do is attract users before the software is
ready for them. A reputation for instability or bugginess is very hard
to shake, once acquired. Conservativism pays off in the long run;
it’s always better for the software to be more stable than the user
expected than less, and pleasant surprises produce the best kind of
word-of-mouth.

http://producingoss.com/

CHAPTER 6. VERSIONING & RELEASING 44

If it’s not so clear for you, a way to gauge when a project is stable is by monitoring
how others use the code. If you are lucky, users will ask you questions about the
project, or blog about it. You can do GitHub code searches to see real projects
using the library, gaining insight into potential API changes to better suit users’
needs.

SemVer states that when a library is in major version zero (0.y.z) it’s under initial
development, and anything may change at any time. The public API is not yet
stable. If you’re changing the API frequently, you should either still be in version
0.y.z or on a separate development branch working on the next major release.

Version 1.0.0 denotes a stable public API, and users may write programs that de-
pend on that contract. SemVer describes situations inwhich a project should prob-
ably be at least on version 1.0:

• Project is used in production
• Project reached a stable API
• Maintainers worry about backward compatibility

While 1.0 is a statement about the stability of the API and according to SemVer
it doesn’t have to do with documentation, good documentation should exist for
a 1.0 project. Strictly speaking you may put off improved documentation, better
tests, sample code, a logo, and any other features that open source projects often
provide; those are not required by SemVer for v1.0.

Whatever you are working on, let it see the daylight as soon as you can. Define
and communicate a concrete goal, and when you achieve it, call it 1.0 and publish
it.

Releasing new versions

Youmay publish new releaseswhen the project is perfect inmost aspects, or when
it’s immediately relevant.

The first version of iPhone didn’t have copy and paste functionality. That flow
wasn’t polished, so Apple didn’t release it: the first iPhone didn’t allow you to copy
and paste. Everything that went out in that release was as good as they could
make it.

CHAPTER 6. VERSIONING & RELEASING 45

On the other hand, the first Rails version lacked quality in many aspects, but it
was very relevant. If David Heinemeier Hansson had waited for perfection, we
probably wouldn’t have Rails as we know it today.

Your project might not need to release with any periodicity whatsoever, staying
mostly stable instead. OpenSSL for example publishes most releases when a se-
curity vulnerability is fixed.

If you don’t release often though, you might encounter inertia before preparing
new releases. If this is the case, you might consider doing it more often.

Release early. Release often.

With time-based releases you obtain early and frequent releases, creating a tight
feedback loop between developers and testers or users. With a periodic release
schedule, contributions are regularly made public.

Pick a reasonable time frame for your project, so that you get a good compromise
between releasing very often and very slowly (every time you add a commit versus
every year, for instance). If you release too often you might annoy people when
they upgrade; if you do it too infrequently, fixed bugs won’t reach the majority of
your users.

Security fixes or bugs that block most people from using the project should be
released as soon as possible, regardless of schedule.

On the other hand, sometimes there might be no changes to publish, and when a
period finishes there is no need to release.

Security releases

A vulnerability report shouldn’t be published until its fix has been released. When
you get a new report, keep it private.

Before you start fixing the bug, you should request a Common Vulnerabilities and
Exposures (CVE) identifier. You can request an id from any of the CVE Numbering
Authorities. CVE identifiers allow us to more easily talk about security issues: “is-
sue CVE-2009-3555” instead of “the OpenSSL vulnerability, from like 2009, the DoS
one. No, not that one.”

http://martinfowler.com/bliki/FrequencyReducesDifficulty.html
https://cve.mitre.org/cve/cna.html
https://cve.mitre.org/cve/cna.html

CHAPTER 6. VERSIONING & RELEASING 46

CVE allows multiple vendors, products, and customers to track accurately secu-
rity vulnerabilities and make sure they are dealt with. CVE Identifiers are from an
international information security effort that is publicly available and free to use.

The CVE report specifies:

• The project (name and related links)
• A description of the vulnerability
• Affected and fixed versions
• What’s the vulnerability’s impact (how many people are affected and how)
• What is the upgrade process
• What workarounds can users take, if any
• Credits
• Any other kind of relevant information you can provide

An example follows:

Cross-site request forgery (CSRF) vulnerability in doorkeeper 1.4.0

and earlier allows remote attackers to hijack the user's OAuth

authorization code. This vulnerability has been assigned the CVE

identifier CVE-2014-8144.

Versions Affected: 1.4.0 and below

Fixed Versions: 1.4.1, 2.0.0

Impact

Doorkeeper's endpoints didn't have CSRF protection. Any HTML document

on the Internet can then read a user's authorization code with

arbitrary scope from any Doorkeeper-compatible Rails app you are

logged in.

Releases

The 1.4.1 and 2.0.0 releases are available at

CHAPTER 6. VERSIONING & RELEASING 47

https://rubygems.org/gems/doorkeeper and

https://github.com/doorkeeper-gem/doorkeeper.

Upgrade Process

Upgrade doorkeeper version at least to 1.4.1.

Workarounds

There are no feasible workarounds for this vulnerability.

Credits

Thanks to Sergey Belov of DigitalOcean for finding the vulnerability,

Phill Baker of DigitalOcean for reporting and fixing it, and Egor

Homakov of Sakurity.com for raising awareness.

Work on the vulnerability in private. Only publish the fixes when you release new
patched versions of your project. This keeps people from learning about the vul-
nerability before it’s been fixed, potentially taking advantage of affected deploys of
your software. The goal is to reachmost users of your project so they can upgrade
as soon as possible.

If you take too long to release, the attacker might announce it before you have a
fix ready. The person who reported the vulnerability is the “white hat”. There may
already be “black hats” taking advantage of it. Some CVE reports go public after
two weeks since an id was granted, minimizing this period of potentially unknown
vulnerability.

After you get the CVE identifier and report, the fix and releases ready, publish this
information to security lists and users of your library as widely as you’re able to.

Some examples for Ruby projects:

• oss-security@lists.openwall.com mailing list.
• ruby-security-ann Google group.
• ruby-advisory-db GitHub project.

https://github.com/RedHatProductSecurity/CVE-HOWTO#distrosvsopenwallorg
https://github.com/RedHatProductSecurity/CVE-HOWTO#distrosvsopenwallorg
https://groups.google.com/forum/#!forum/ruby-security-ann
https://github.com/rubysec/ruby-advisory-db

CHAPTER 6. VERSIONING & RELEASING 48

Deprecation cycles

Deprecating existing functionality is a normal part of software development and
is often required to make forward progress.

Before you completely remove the functionality in the next major version, there
should be at least one minor release that contains the deprecation notice so that
users can smoothly transition to the new API. Then you can safely change the API,
and release new versions, numbered as detailed in Semantic Versioning.

When deprecating part of your public API consider:

1. updating your documentation to let users know about the change
2. publish a new minor release with the deprecation notice in place

Quitting as a maintainer

It is natural for the founder of an open-source project to move on to other inter-
ests. Abandoning the project can be very damaging to the community. Whenever
possible, the owner should leave the project to new maintainers.

Abandoning an open source project should be done similarly to how a company
handles the end of life of any product, minimally affecting its customers.

When you’d like to let go of a project youmaintain, look after someone competent
in the community whomay be willing to take it over. If you find someone, it will be
beneficial for current users, for your reputation and the organization behind the
project, and also for the new maintainer.

This stepmay sound hard, but it comes for free if you create a welcoming environ-
ment, where new contributors are added to the team as they express interest and
show sufficient skills. Involving outside developers in the running of your project
early on is healthy for the project and creates a pool of people that you can turn
the project over to when needed.

The lottery factor (more dramatically known as the bus factor) of a project is the
number of team members that can be lost from a project before it collapses due
to lack of competent people. Bram Moolenaar, maintainer of the Vim text editor

http://semver.org/
https://en.wikipedia.org/wiki/Bus_factor

CHAPTER 6. VERSIONING & RELEASING 49

since 1991, stated 23 years later that the community should “keep him alive” for
the Vim project to succeed in the foreseeable future.

A better outcome for the health of the project was set in a different example, when
Joe Ferris announced he was looking for new maintainers for backbone-support in
the form of a Pull Request to the project. Eduardo Gutierrez saw the Pull Request
and stepped up as new maintainer.

Sometimes you might stop development on a project because it is not relevant
anymore, for example, because new better tools are available that solve the prob-
lem for which your project existed. In that case, you can announce the reasons it
is not maintained anymore in the documentation, with relevant links for current
users.

When you find new maintainers, give them access to the repository or transfer it
to their account, and do the same for related websites and services, social media
and email accounts, grant package manager permissions so they can release new
versions, etc. Announce the transfer to your community, leave the community
happily intact, be proud of the work you have been doing and just done, and enjoy
the time you will spend on new ventures.

http://www.binpress.com/blog/2014/11/19/vim-creator-bram-moolenaar-interview/
https://github.com/thoughtbot/backbone-support/pull/27

Conclusion

Over the course of this book, we’ve learned the skills needed to grow andmaintain
an open source project: how to encourage the collaboration styles we prefer, how
to communicate effectively with the team and contributors, how to improve pro-
ductivity leveraging Git and GitHub, how to consistently keep good quality, what
version numbers mean, how to build and publish releases, how to write useful
documentation, the different ways of making our work freely available through
the use of copyright laws, and how to prioritize all these tasks.

These topics describe how open source teams work, but are equally useful for
organizations building products that, while not meant to be freely available, are
developed in collaboration with many people. Following open source practices is
a reliable way of incorporating the benefits of modern development practices into
internal workflows, making our organizations more efficient.

You now have the tools to develop and lead better projects following open source
practices. Keep on collaborating!

50

Resources

Community

• http://ben.balter.com/2015/03/17/open-source-best-practices-external-
engagement/

• http://robots.thoughtbot.com/inbox-zero-github-issues-edition
• http://robots.thoughtbot.com/moving-open-source-project-mailing-lists-
to-stack-overflow

• http://ryanbigg.com/2015/11/open-source-work/
• http://srawlins.ruhoh.com/checklist-for-the-benevolent-open-source-
maintainer/

• http://www.codesimplicity.com/post/open-source-community-simplified/
• http://www.drmaciver.com/2015/08/throwing-in-the-towel/
• Avoiding Burnout, and Other Essentials of Open Source Self-Care — Kath-
leen Danielson https://vimeo.com/106232256

• IO.js (exNode.js), andonbeing adictator vsGNU-open: http://thechangelog.com/139/

Git

• http://rakeroutes.com/blog/deliberate-git
• http://who-t.blogspot.de/2009/12/on-commit-messages.html
• https://stackoverflow.com/questions/6543913/git-commit-best-practices

Documentation

51

CHAPTER 8. RESOURCES 52

• http://calebthompson.io/how-to-write-a-readme/
• http://css-tricks.com/words-avoid-educational-writing/
• http://robots.thoughtbot.com/how-to-write-a-great-readme

Licenses

• https://en.wikipedia.org/wiki/Berkeley_Software_Distribution
• https://en.wikipedia.org/wiki/Copyleft
• https://en.wikipedia.org/wiki/Copyright
• https://en.wikipedia.org/wiki/Free_license
• https://en.wikipedia.org/wiki/Free_software_license
• https://en.wikipedia.org/wiki/GNU_General_Public_License
• https://en.wikipedia.org/wiki/GNU_Lesser_General_Public_License
• https://en.wikipedia.org/wiki/ISC_license
• https://en.wikipedia.org/wiki/Open-source_license
• https://en.wikipedia.org/wiki/Open_source
• https://en.wikipedia.org/wiki/Permissive_free_software_licence
• https://en.wikipedia.org/wiki/Software_patent
• https://en.wikipedia.org/wiki/The_Open_Source_Definition
• https://www.gnu.org/copyleft/copyleft.html
• https://www.gnu.org/licenses/license-list.html
• https://www.gnu.org/licenses/license-recommendations.html
• http://choosealicense.com/licenses/
• http://opensource.org/faq
• http://opensource.org/licenses
• http://stackoverflow.com/questions/40100/apache-license-vs-bsd-vs-mit
• http://wiki.civiccommons.org/Choosing_a_License
• http://www.everything2.com/index.pl?node=BSD%20Code%20in%20Windows
• http://www.kuro5hin.org/?op=displaystory;sid=2001/6/19/05641/7357
• http://www.linuxjournal.com/article/5935

Versioning

• http://2ndscale.com/rtomayko/2012/adopt-an-open-source-process-
constraints

CHAPTER 8. RESOURCES 53

• http://gilesbowkett.blogspot.com/2015/01/versioning-is-nuanced-social-
fiction.html?m=1

• http://jeremyckahn.github.io/blog/2013/12/29/the-fear-of-1-dot-0-0/
• http://robots.thoughtbot.com/every-two-weeks
• http://robots.thoughtbot.com/handling-security-issues-in-open-source-
projects

• http://www.binpress.com/blog/2014/11/19/vim-creator-bram-moolenaar-
interview/

• https://en.wikipedia.org/wiki/Release_early,_release_often
• https://en.wikipedia.org/wiki/Software_versioning
• https://gist.github.com/jashkenas/cbd2b088e20279ae2c8e
• https://github.com/RedHatProductSecurity/CVE-HOWTO
• https://github.com/jashkenas/underscore/issues/1805
• https://programmers.stackexchange.com/questions/255404/how-to-use-
github-branches-and-automatic-releases-for-version-management

Others

• http://confreaks.tv/videos/rubyconf2013-maintaining-sanity
• https://hacks.mozilla.org/2013/05/how-to-spread-the-word-about-your-
code/

• http://www.drdobbs.com/open-source/building-and-maintaining-an-
open-source/240168415

	Preface
	Community
	Communication channels
	Answering questions
	Issue tracker gardening
	How much communication is enough?
	On effective feedback
	Expectations and guilt

	Git & GitHub
	Request small, cohesive commits
	Request good commit messages
	Request good git history
	Reject patches

	Maintaining quality
	Adopt a style guide
	Use static analysis tools
	Request regression tests for every change
	Run tests on every commit
	Choose your own values

	Documentation
	README
	Overview
	Installing
	News
	Code of Conduct
	Contributing
	Releasing
	Wiki

	Licenses
	Public domain
	Copyleft licenses
	Permissive licences
	Dual Licensing
	Other permissive (and informal) licenses

	Versioning & Releasing
	Semantic Versioning
	Publishing a new release
	Maintenance releases
	Release version 1.0
	Releasing new versions
	Security releases
	Deprecation cycles
	Quitting as a maintainer

	Conclusion
	Resources

