GEOCODING
RAILS

..Wlh&s N A

Geocoding on Rails

thoughtbot Laila Winner Josh Clayton

Cover by Devon St. Clair

Contents

Introduction

| Strategies
Geocoding in Rails Applications
LocalData e
External Services L L

WebRequests e

Il Application Development
Introduction L
SearchDatalocally
PlotPointsonaMap
Search DataExternally
Geocode ExistingData L o
Geocode Browser Requests on the ServerSide

Geocode Browser Requests on the ClientSide

CONTENTS

Il Improving Application Performance
Introduction Lo
Cache Results from External Requests
Geocode Only When Necessary

Speed Up Proximity Queries with PostGIS

IV Testing
Testing a Rails Application with Geocoded Data.
Acceptance Tests L
UnitTests e

CoffeeScriptUnitTests

V Appendices

22
23
23
25
27

29
30
30
34

45

Introduction

“ “The world is a beautiful book, but it's not much use if you don’t
know how to read.” — Carlo Goldoni, Pamela

The human desire to acquire knowledge of the natural world has produced
countless systems for aggregating, manipulating, and representing geospatial
information. In recent years—now that we’re all generally agreed on the shape
of the Earth—it has also produced a lot of software.

Working with geocoded data within the context of a web application can be
tricky. While the availability of free and open-source libraries has greatly sim-
plified the challenges of accurately geocoding data and performing meaningful
analysis, there are still a plethora of decisions to be made before the first line
of code is written: What tools should we use? Where should the business logic
live? What's the best way to write a test for this? And after the feature has
been built, Is it fast enough?

Geocoding on Rails is a resource for developers seeking an object-oriented,
test-driven approach to working with geocoded data within Rails applications.
It is divided into four sections:

1. Strategies for selecting an external geocoding service

2. Application Development approaches for organizing your code as
you're developing features

3. Improving Application Performance with caching and other techniques

4. Testing techniques for your server- and client-side code

INTRODUCTION iv

The code samples in this book come from commits in the bundled example
application. The example application is a Rails app which lets users search
for Starbucks locations nearby. Take a look at the README for instructions on
setting it up.

https://github.com/thoughtbot/geocoding-on-rails/tree/master/example_app
https://github.com/thoughtbot/geocoding-on-rails/tree/master/example_app
https://github.com/thoughtbot/geocoding-on-rails/blob/master/example_app/README.md

Part |

Strategies

Geocoding in Rails Applications

Geocoding is the process of obtaining coordinates (latitude and longitude) with
full or partial address information. This information commonly takes the form
of a postal code, full street address or the name of a point of interest, such as
a library or airport. An application with geocoded data typically manages two
aspects of data interaction:

1. Create data specific to a coordinate
2. Query against data near a coordinate

Within a Rails application, objects may have address information which needs
to be plotted on a map or compared to other records in the database; in cases
like this, the address must be geocoded to a geographic coordinate which can
be used for displaying information or querying against.

There are plenty of gems that automate the process of geocoding data as it’s
added or updated. The geocoded object often exposes a method to be used
during the geocoding process; the gem then updates the object’s latitude and
longitude after calculating its position. The gem also handles interactions with
any external geocoding services.

Geocoding can also be performed on the client side: The W3C geolocation
APl is supported by most browsers, and organizations like Google and Yandex
maintain JavaScript APIs for their mapping services.

Local Data

The most basic approach to integrating geocoding functionality is to maintain
a local resource that maps address information to geographic coordinates.

Calculating Coordinates

The area gem relies on public domain records and does not make external
requests to geocode addresses. This gem provides a simple interface for con-
verting ZIP codes to coordinates by adding the method #to_latlon to String:

https://github.com/jgv/area

'02101" .to_latlng # "42.370567, -71.026964"

Although it’'s possible to use area to convert city and state to a ZIP code, such
conversions are unreliable and error-prone because area operates on static
data:

'"Washington DC'.to_zip # []
'Washington, DC'.to_zip # ["20001", "20002", ...]
'Washington, D.C.'.to_zip # []

While the flaws in the data may be a deterrent to using gems which don’t inter-
act with an external service, geocoding with area is very fast and is sufficient if
you only need to geocode US ZIP codes.

External Services

Choosing a Service

Selecting a geocoding service is best done with an estimate in mind of the daily
volume of requests your application is likely to make. The free geocoding ser-
vices offered by Google and Yandex are appropriate for most cases, but if their
rate limits are too low for your needs, you may want to consider subscribing to
a paid service.

Google and Yandex offer free services with rate limits of 2,500 and 25,000
requests per day, respectively. Client-side requests to the Google Geocoding
APl do not count toward the rate limit. Google Maps for Business is a paid
service with a rate limit of 100,000 requests per day. Other good options for
paid services are Yahoo BOSS and Geocoder.ca (US and Canada only).

While the free Google and Yandex services are robust and well-documented,
open-source services are also worth considering. For example, using Nom-
inatim or Data Science Toolkit allows your application to be independent of
Google’s or Yandex’s terms of service.

https://github.com/jgv/area
https://github.com/jgv/area
https://github.com/jgv/area
https://developers.google.com/maps/documentation/geocoding/
http://api.yandex.com/maps/
https://developers.google.com/maps/articles/geocodestrat#client
https://developers.google.com/maps/documentation/business/
http://developer.yahoo.com/boss/geo/
http://geocoder.ca/?services=1
http://wiki.openstreetmap.org/wiki/Nominatim
http://wiki.openstreetmap.org/wiki/Nominatim
http://www.datasciencetoolkit.org/

Calculating Coordinates

Gems like geocoder provide a simple interface for querying an external service
to convert any string to a coordinate. External services vary in support for points
of interest (such as hotels and airports, rather than specific addresses), but will
provide results for most types of queries:

Geocoder.coordinates('Logan Airport')
[42.36954300000001, -71.020061]

Geocoder.coordinates('washington dc")
[38.8951118, -77.0363658]

The request results will have varying levels of accuracy depending on the ex-
ternal service. This is significantly better than relying on local data because
of the external service’s ability to infer information from the string. However,
geocoding with an external service is slower than geocoding locally—a single
request will often take as long as 50ms to 150ms.

Web Requests

Calculating a User’s Location by IP Address

Many applications ask users to provide their current location in order to perform
a search for addresses nearby. However, it's often possible to retrieve this
information from the browser request itself.

The geocoder gem provides a #location method on the request object which
returns a location result with latitude and longitude:

> request.location
=> #<Geocoder::Result: :Freegeoip:0x007f8ecca5d608
@cache_hit=true,
@data= {
"ip"=>"199.21.87.210",

"country_code"=>"US",

https://github.com/alexreisner/geocoder
https://github.com/alexreisner/geocoder
https://github.com/alexreisner/geocoder#request-geocoding-by-ip-address

"country_name”=>"United States”,
"region_code"”=>"CA",
"region_name"”=>"California”,
"city"=>"Berkeley",
"zipcode"=>"",
"latitude"”=>37.8716,
"longitude"=>-122.2728,
"metro_code"=>"807",
"areacode"=>"510"

»
Determining a user’s location via IP address interacts with a different set of

services than attempting to convert a physical address to a coordinate; in the
example above, the geocoder gem is using the freegeoip.net service.

Calculating a User’s Location from a Web Browser

Within a web browser, the W3C Geolocation API provides location data acces-
sible with JavaScript:

navigator.geolocation.getCurrentPosition(successCallback, failureCallback);

The W3C Geolocation APl is agnostic in how it calculates location. Depending
on the user’s device, location may be determined by GPS, inferred based on
network IP addresses or triangulated based on distance from cellular towers.

https://github.com/alexreisner/geocoder
http://freegeoip.net/
http://dev.w3.org/geo/api/spec-source.html
http://diveintohtml5.info/geolocation.html#the-code
http://dev.w3.org/geo/api/spec-source.html

Part i

Application Development

Introduction

The chapters in this section outline recommended approaches to building fea-
tures that rely on the presence of geocoded data. As a starting point, let’s
assume we have a few thousand records in our database, each with accurate
address information.

Without the ability to query our data by location, we can start by displaying
addresses:

app/views/locations/index.html.erb
<ul class="locations">
<% @locations.each do |location| %>
<li data-id="<%= location.id %>">
<p><%= location.name %></p>
<p>
<%= location.street_line_1 %>

<%= location.street_line_2 %>

<%= location.city %>, <%= location.state %> <%= location.postal_code %>
</p>
</1i>
<% end %>

app/controllers/locations_controller.rb
class LocationsController < ApplicationController
def index
@locations = Location.all
end
end

app/models/location.rb
class Location < ActiveRecord: :Base
validates :store_number, uniqueness: true

end

While displaying this information is informative, it does not provide much value
to users seeking to filter or visualize results by location. To facilitate meaning-

ful interactions with our data we need to add features like searching and user
geolocation.

Search Data Locally

To start geocoding Location, we will add two previously mentioned gems: area
and geocoder. Area will be used to geocode Location based on postal code,
while geocoder will be used to do a radial search for locations within a distance.

Changes to the Controller and View

Instead of just assigning Location.all to @locations, we take into account pos-
sible search values; when a value is present, we call the method Location.near
(provided by the geocoder gem), which adds some trigonometry to the SQL
query to search within a certain radius. Without a search term, however, we
continue to use Location.all:

app/controllers/locations_controller.rb
def index
@locations = if near_query.present?
Location.near(near_query)
else
Location.all
end
end

The method .near provided by geocoder is flexible; at this point, we provide co-
ordinates calculated by the area gem (and rolled up into the PostalCode class).
By providing coordinates, this ensures the geocoder gem does not hit any ex-
ternal services to calculate the center of the search, which makes for a more
efficient process and supports faster page load:

app/controllers/locations_controller.rb
def near_query

PostalCode.new(search_value).coordinates

https://github.com/jgv/area
https://github.com/alexreisner/geocoder
https://github.com/jgv/area
https://github.com/alexreisner/geocoder
https://github.com/alexreisner/geocoder
https://github.com/alexreisner/geocoder
https://github.com/jgv/area
https://github.com/alexreisner/geocoder

end

def search_value
params[:search] && params[:search][:value]

end

app/models/postal_code.rb
class PostalCode
def initialize(value)
@value = value

end

def for_geocoding
if @value.present?
('%05d" % @value.to_s.gsub(/\A(\d+)(-\d+)?\z/, '\1').to_i).first(5)
end
end

def coordinates
if for_geocoding && latlon = for_geocoding.to_latlon
latlon.split(/\,/).map(&:strip).map(&:to_f)
else
1
end
end
end

The view changes very little, adding only a form to allow for searching:

app/views/locations/index.html.erb

<%= form_for :search, method: :get, url: root_path do |[form| %>
<%= form.label :value, 'Search by Postal Code’' %>
<%= form.text_field :value %>
<%= form.submit 'Search’ %>

<% end %>

10

Changes to the Model

The model now needs to do two things: know how to update its coordinates
when the model is updated and recognize itself as a geocodable model.

To update coordinates, adding an after_validation callback to geocode the
model is most straightforward:

app/models/location.rb
class Location < ActiveRecord::Base
validates :store_number, uniqueness: true

geocoded_by :country_code
after_validation :geocode_by_postal _code, if: :postal_code?
private

def geocode_by_postal_code
self.latitude, self.longitude = PostalCode.new(postal_code).coordinates
end
end

This callback relies on PostalCode, taking advantage of the area gem to convert
#postal_code to useable coordinates.

To add the .near class method for searching based on location, the model
needs to declare the attribute or method (passed as a symbol to geocoded_by)
by which it can be geocoded. Because geocoding is being handled by the
PostalCode class and not the geocoder gem, the attribute :country_code is per-
fectly acceptable for the current use case. When hitting an external service
like Google, however, we’ll need to change this attribute to something more
specific, such as street address.

Testing

« Unit Tests

https://github.com/jgv/area
https://github.com/alexreisner/geocoder

1
Plot Points on a Map

At this point, all the data has been geocoded; the next step is to display this
information by rendering each location on a map. This allows users to under-
stand spatial relationships between the data points.

We'll be using the Google Maps JavaScript API to display a map and plot a
marker for each location. Because requests to the Google Maps API are made
on the client side, there are no changes to the controller or model.

Changes to the View

Before jumping into querying the maps API, we make some decisions about
how we’re going to organize our client-side scripts.

First, we create a namespace for our application:

app/assets/javascripts/base.coffee

@ExampleApp = {3}

Then we create a javascript.html.erb partial which will be rendered in the ap-
plication layout body:

app/views/application/_javascript.html.erb
<%= javascript_include_tag "application”, "data-turbolinks-track” => true %>
<%= yield :javascript %>

app/views/layouts/application.html.erb
<body>
<div class="container"”>
<%= yield %>
</div>

<%= render 'javascript' %>
</body>

https://developers.google.com/maps/documentation/javascript/

12

With our initial setup complete, we now create some CoffeeScript classes to
handle interactions with the maps API. We begin by creating a Mapper to display
the map on the page with markers placed at the correct coordinates:

app/assets/javascripts/mapper.coffee
class @ExampleApp.Mapper
constructor: (cssSelector) ->
@cssSelector = cssSelector
@map = null
@bounds = new ExampleApp.MapBounds

addCoordinates: (latitude, longitude) ->
if !_.isEmpty(latitude) and !_.isEmpty(longitude)
@bounds.add(latitude, longitude)

render: =>
@map = new ExampleApp.Map(@cssSelector, @bounds)
@map.build()

Next we create a MapBounds class which provides a simple interface for interact-
ing with Google’s representation of coordinates and bounds:

app/assets/javascripts/map_bounds.coffee
class @ExampleApp.MapBounds
constructor: ->
@googlelLatlLngBounds = new google.maps.LatLngBounds()
@latLngs = []

add: (latitude, longitude) ->
latLng = new google.maps.LatlLng(latitude, longitude)
@googlelLatlngBounds.extend(latLng)
@latLngs.push(latLng)

getCenter: ->
@googlelLatlLngBounds.getCenter()

We also create a Map class to provide a simple interface to the Google Maps
JavaScript API for rendering a responsive map:

13

app/assets/javascripts/map.coffee
class @ExampleApp.Map
constructor: (cssSelector, bounds) ->
@googleMap = new google.maps.Map($(cssSelector)[0], @_mapOptions())

@bounds = bounds

$(window) .on 'resize’, =>
google.maps.event. trigger(@googleMap, 'resize’)
@_updateCenter()

build: ->
@_updateCenter()
@_plotCoordinates()

_updateCenter: ->
@googleMap.fitBounds @bounds.googlelLatlLngBounds
@googleMap.setCenter @bounds.getCenter()

_plotCoordinates: ->
for latLng in @bounds.latlLngs
new google.maps.Marker(position: latlLng, map: @googleMap)

_mapOptions: ->
zoom: 13

mapTypeld: google.maps.MapTypeld.SATELLITE

Finally, we add a function in the view which instantiates a Mapper and calls
addCoordinates() and render () to display a map and plot each location on page
load. We also add a map element to the DOM:

app/views/locations/index.html.erb
<div id="map" style="height: 400px;"></div>

<ul class="locations">
<% @locations.each do |location| %>
<%= render location %>
<% end %>

14

<% content_for :javascript do %>
<script type="text/javascript”

src="//maps.googleapis.com/maps/api/js?sensor=false"></script>

<%= javascript_tag do %>
$(function() {
var mapper = new ExampleApp.Mapper('#map’');

$('[data-latitude]’).each(function(index, element) {
mapper . addCoordinates(
$(element).attr('data-latitude’),
$(element).attr('data-longitude’)
)5
b;

mapper.render();
DR
<% end %>

<% end %>

app/views/locations/_location.html.erb
<%= content_tag_for :1i, location,
data: { latitude: location.latitude, longitude: location.longitude } do %>
<header>
<h1 data-role="name"><%= location.name %></h1>
<% if location.respond_to?(:distance) %>
<h2 data-role="distance"><%= location.distance.round(1) %> mi</h2>
<% end %>
</header>
<section>
<section class="location-info">
<p data-role="address"><%= location.address %></p>

<p data-role="phone-number">
<%= link_to location.phone_number, "tel:#{location.phone_number}" %>
</p>

</section>

</section>
<% end %>

Search Data Externally

While avoiding requests to third-party services results in faster geocoding and
fewer dependencies, it is often inaccurate. Some postal codes cover hundreds
of square miles; when plotting points on a map or performing a search, data
accuracy is important. By relying on an external service to geocode data, co-
ordinates become more accurate, searches become more helpful and maps
provide greater value.

Changes to the Controller and View

Instead of converting the search string (a postal code) to coordinates within the
controller, we instead pass the search string directly to Location.near, which will
handle the geocoding. Because the geocoder gem is hitting an external ser-
vice, the search string doesn’t need to adhere to a specific format—the service
will calculate coordinates as best it can. This removes the restriction of only
searching by postal code, allowing users to search locations in a much more
intuitive fashion:

app/controllers/locations_controller.rb
class LocationsController < ApplicationController
def index
@locations = if search_value.present?
Location.near(search_value)
else
Location.all
end

end
private

def search_value

https://github.com/alexreisner/geocoder

params[:search] && params[:search][:value]
end

end

Changes to the Model

The model changes in two areas: after_validation calls the #geocode method
(provided by the geocoder gem) and the model now considers itself geocoded
by #address instead of #country_code. Every time we validate the model,
geocoder makes a request to an external service, updating the model’s
coordinates. While naive, this approach works well and is often more accurate
than geocoding by postal code.

app/models/location.rb

class Location < ActiveRecord::Base
validates :store_number, uniqueness: true
geocoded_by :address

after_validation :geocode
private
def address
[street_line_1, street_line_2, city, state,
postal_code, country_code].compact.join ', '

end
end

Testing
« Geocoding with an External Service
Geocode Existing Data

Once a modelis able to geocode itself, the next task at hand is updating existing
records with coordinates. The geocoder gem provides a scope (.not_geocoded)

https://github.com/alexreisner/geocoder
https://github.com/alexreisner/geocoder
https://github.com/alexreisner/geocoder

17
which returns all records missing latitude and longitude.

lib/tasks/geocode_locations.rake
desc "Fill in coordinates for locations which haven't been geocoded”
task geocode_locations: :environment do
Location.not_geocoded.each do |location|
location.geocode
location.save!
end

end

Geocode Browser Requests on the Server Side

Once data in the application is searchable based on values other than postal
codes, there are a number of usability improvements that can be made; one is
pre-populating the search field with a guess at the city and state of the user.

Changes to the Controller and View

The geocoder gem extends the request object within Rails controllers with a
new method, #location, which exposes information about both city and state.
By creating a new class, RequestGeocodingGatherer, to handle calculating city and
state, we're able to keep this logic out of the controller and have small classes,
each with their own responsibility:

app/models/request_geocoding_gatherer.rb
class RequestGeocodingGatherer
def initialize(request)
@request = request

end

def current_location
if city && state
[city, statel.join ',

else

https://github.com/alexreisner/geocoder

18

1

end

end

private

delegate :city, :state, to: :location
delegate :location, to: :@request

end

Within the controller, we specify a class_attribute :request_geocoding_gatherer
and assign it to our new class to retrieve the current location string from the
request

app/controllers/locations_controller.rb
class LocationsController < ApplicationController
class_attribute :request_geocoding_gatherer

self.request_geocoding_gatherer = RequestGeocodingGatherer

def index
@current_location_by_ip = geocoded_request_information.current_location
@locations = if search_value.present?
Location.near(search_value)
else
Location.all
end

end

private

def search_value
params[:search] && params[:search][:value]

end

def geocoded_request_information
request_geocoding_gatherer.new(request)
end

end

In the view, we set the search field’s placeholder to @current_location_by_ip:

app/views/locations/index.html.erb

<%= form_for :search, method: :get, url: root_path do |[form| %>
<%= form.label :value, 'Search by Location’ %>
<%= form.text_field :value, placeholder: @current_location_by_ip %>
<%= form.submit ’'Search’ %>

<% end %>

Testing

« Geocoding with an External Service

Geocode Browser Requests on the Client Side

19

In the previous section we referred to the Rails request object to reverse
geocode the user’s location and pre-populate the search field with the
user’s city and state. As an alternative to the server-side approach, we can
reverse geocode the user’s location using the W3C Geolocation and Google

Geocoding APlIs.

Changes to the View

In the view, we add a function which calls getLocation() on an instance of
ExampleApp.CurrentLocation if the search field’s placeholder attribute is blank.
We pass the function a callback which sets the placeholder attribute to the cur-

rent city and state:

app/views/locations/index.html.erb
$(function() {
if (_.isEmpty($('#search_value').attr('placeholder’))) {
var currentlLocation = new ExampleApp.CurrentLocation();
currentLocation.getLocation(function(location) {
$('#search_value').attr('placeholder’, location);

»

http://dev.w3.org/geo/api/spec-source.html
https://developers.google.com/maps/documentation/geocoding/
https://developers.google.com/maps/documentation/geocoding/

20

)
DR

Next, we build out our CurrentLocation class. When a new CurrentLocation
is instantiated, a call is made to the W3C Geolocation API. The API function
navigator.geolocation.getCurrentPosition() requires a success callback and a
failure callback; in this implementation, the success callback is a function that
reverse geocodes the geographic coordinates returned. If either of the two
external requests is unsuccessful, the getLocation() callback is executed using
CurrentLocation.DEFAULT_LOCATION

app/assets/javascripts/current_location.coffee
class @ExampleApp.CurrentLocation
@DEFAULT_LOCATION = 'Boston, MA'

constructor: (deferredResolution) ->
@deferredResolution = deferredResolution || (defer) =>
navigator.geolocation.getCurrentPosition(
@_reverseGeocodelocation(defer), defer.reject

getlLocation: (callback) =>
successCallback = (value) -> callback(value)
failureCallback = (value) -> callback(ExampleApp.CurrentLocation.DEFAULT_LOCATION)

$.Deferred(@deferredResolution).then(successCallback, failureCallback)

_reverseGeocodelLocation: (deferred) =>
(geoposition) =>
reverseGeocoder = new ExampleApp.ReverseGeocoder (
geoposition.coords.latitude,
geoposition.coords.longitude

)

reverseGeocoder.location(deferred)

The last step is to create the ReverseGeocoder to handle interactions with the
external geocoding service:

http://dev.w3.org/geo/api/spec-source.html

app/assets/javascripts/reverse_geocoder.coffee
class @ExampleApp.ReverseGeocoder
constructor: (latitude, longitude) ->
@latLng = new google.maps.LatLng(latitude, longitude)
@geocoder = new google.maps.Geocoder

location: (deferred) ->
@geocoder.geocode { latLng: @latLng }, (response, status) =>
if status is 'OK’
deferred.resolve(@_locationFromResponse(response[0]))
else
deferred.reject()

_locationFromResponse: (result) ->
city = result.address_components[2].long_name
state = result.address_components[4].short_name
"#{city}, #{state}”

Testing

« CoffeeScript Unit Tests

21

Part Il

Improving Application
Performance

22

23
Introduction

As your application increases in complexity, you may see a decrease in perfor-
mance. Broadly speaking, the performance of the geocoding aspects of your
application can be improved in two ways: limiting the number of external re-
quests and making database queries faster.

Cache Results from External Requests

The geocoder gem provides support for caching responses from external
geocoding services by URL. When your application attempts to geocode a
location that has already been geocoded, the gem will return the cached
response for the request URL.

Start by defining a class to encapsulate the cache. In this example, we’re using
Memcache (because it works immediately with Rails.cache), but Redis is also
supported. Geocoder requires that the cache object implement the following
four methods:

. CacheClassName#[] (key)
. CacheClassName#[J]=(key, value)
. CacheClassName#del (key)

A WIN o

. CacheClassName#keys

The first three methods are invoked when setting, retrieving and deleting key-
value pairs. The last method, CacheClassNametkeys, is invoked only when clear-
ing out the cache; in this implementation, it returns an empty array:

class GeocoderCache
CACHE_KEY = 'geocoder_cache’

def initialize(store = Rails.cache)
@store = store

end

https://github.com/alexreisner/geocoder
https://github.com/alexreisner/geocoder

def [1=(key, value)
if value.nil?
del key
else
write_to_store key, value
end

end

def [I(key)
read_from_store key
end

def keys
0]

end

def del(key)
store.delete full_key(key)

end

private

def full_key(key)
[CACHE_KEY, key].join(' ').parameterize
end

def read_from_store(key)
store.read full_key(key)

end

def store
@store
end

def write_to_store(key, value)
store.write full_key(key), value
end

24

25

end

Next, configure the cache store in an initializer:

Geocoder.configure(cache: GeocoderCache.new)

Finally, ensure that you configure the cache_store setting within your Rails ap-
plication correctly in your test environment:

config.cache_store = :null_store

This disallows cached values within your test environment, which means you
can be confident that any tests you write don’t rely inadvertently on state from
other tests.

Testing

« Testing GeocoderCache

Geocode Only When Necessary

Currently we’re geocoding Location objects in an after_validation callback.
This approach is less than ideal because it makes our application more likely to
hit the daily rate limit of the external geocoding service. In addition, we’re slow-
ing down our application with unnecessary external requests: Geocoding with
Google takes an average of 75ms. An easy way to improve improve application
performance is to geocode only when the address changes.

Changes to the Model

To ensure we only geocode when the address changes, we build out
#geocoding_necessary? and define the appropriate behavior where set_coordinates
only runs when #geocoding_necessary? returns true:

26

app/models/location.rb
class Location < ActiveRecord: :Base
ADDRESS_FIELDS = %w(street_line_1 street_line_2

city state postal_code country_code).freeze

class_attribute :geocoding_service
self.geocoding_service = Geocoder

validates :store_number, uniqueness: true

geocoded_by :address

after_validation :set_coordinates, if: :geocoding_necessary?

def self.search_near(term)
coordinates = geocoding_service.coordinates(term)
near (coordinates)

end

def address
address_field_values.compact.join ',

'

end

private

def address_field_values
ADDRESS_FIELDS.map { |field| send field }
end

def address_changed?
(changed & ADDRESS_FIELDS).any?
end

def geocoding_necessary?
if new_record?
missing_coordinates?
else
address_changed?
end

27

end

def missing_coordinates?
latitude.blank? || longitude.blank?
end

def set_coordinates
self.latitude, self.longitude = geocoding_service.coordinates(address)
end

end

Testing

« Testing Objects are Geocoded Only When Necessary

Speed Up Proximity Queries with PostGIS

What is PostGIS?

PostGIS is a powerful spatial database extender for PostgreSQL. Like Post-
greSQL, it is free and open-source. Adding PostGIS to your database enables
persistence of geographic data and makes it possible to retrieve the data with
spatial queries using PostGIS functions. While an exhaustive discussion of
PostGIS is outside the scope of this book, its utility as a tool for speeding up
database queries makes it relevant to include some notes here on its use.

Why is PostGIS Faster?

PostGIS allows geocoded data to be persisted as points on a plane. Prox-
imity queries using PostGIS are less expensive than non-spatial queries be-
cause locations, represented as geographic points, can be compared using the
Pythagorean theorem. The geocoder gem’s .near method, by contrast, com-
pares geographic coordinates on the fly, using the haversine formula.

http://postgis.net
https://github.com/alexreisner/geocoder
http://en.wikipedia.org/wiki/Haversine_formula

28

How Do | Use PostGIS?

While there are currently few comprehensive and up-to-date resources for us-
ing PostGIS with Rails applications in multiple environments, the challenges of
installing and configuring PostGIS are worth tackling if significant improvements
in application performance may be gained.

Using PostGIS with Rails requires installing the ActiveRecord PostGIS Adapter
and RGeo gems. To learn more about PostGIS, consider purchasing a copy of
PostGIS in Action. For an example of how to configure your Rails application
for use with PostGIS, see Using PostGIS in Your Rails Application.

https://github.com/dazuma/activerecord-postgis-adapter
https://github.com/dazuma/rgeo
http://www.manning.com/obe/

Part IV

Testing

29

30
Testing a Rails Application with Geocoded Data

While testing a normal Rails application can be tough, introducing geocoding
and determining how and when to test various aspects of it may be downright
daunting. Let’s break down the various aspects of testing this Rails application
as we build out functionality to shed a bit more light on this subject.

Acceptance Tests

The acceptance tests of our app focus on validating core features such as dis-
playing location results and a functioning geospatial search. The entirety of
browser interaction is handled through a page object, LocationsOnPage, which
exposes methods for interacting with the application and asserting against in-
formation rendered:

spec/support/features/locations_on_page.rb
class LocationsOnPage
ELEMENT_ID_REGEX = /_(\d+)/

include Capybara::DSL
include Rails.application.routes.url_helpers

def initialize
visit root_path

end

def search(value)
fill_in 'Search by Location’, with: value
click_on 'Search’

end
def suggested_search_value
field_labeled('Search by Location’)['placeholder’]

end

def include?(location)

31

locations.include? location
end

private

def locations
Location.where(id: location_ids)
end

def locations_element
find('.locations")
end

def location_elements
locations_element.all('1i")
end

def location_ids
location_elements.map { |node| node['id'J[ELEMENT_ID_REGEX, 1] }
end
end

Let’s look at the very first acceptance test, which simply verifies that locations
are rendered correctly when no search is applied:

spec/features/guest_views_all_locations_spec.rb

require 'spec_helper’

feature 'Guest views all locations’' do
scenario 'each location is displayed with the correct information’ do
stub_geocoding_request '12 Winter St., Boston, MA, 02111, US',
42.35548199999999, -71.0608386
stub_geocoding_request '36 2nd St., San Francisco, CA, 94105, US',
37.788587, -122.400958

boston_location = create(:location, :in_boston)

san_francisco_location = create(:location, :in_san_francisco)

32

locations = LocationsOnPage.new

expect(locations).to include(boston_location)
expect(locations).to include(san_francisco_location)
end
end

In this spec, we create two records and ensure both are displayed. This test
doesn’t actually verify whether any geocoding is taking place and likely falls
into the category of a smoke test.

Next, let’s look at the test which ensures that searching works correctly:

spec/features/guest_searches_by_postal_code_spec.rb

require 'spec_helper’

feature 'Guest searches by postal code' do
scenario 'only displays locations within the search radius’ do
stub_geocoding_request '12 Winter St., Boston, MA, 02111, US', '02111",
42.35548199999999, -71.0608386
stub_geocoding_request '36 2nd St., San Francisco, CA, 94105, US', '94105",
37.788587, -122.400958

boston_location = create(:location, :in_boston)

san_francisco_location = create(:location, :in_san_francisco)

locations = LocationsOnPage.new

locations.search boston_location.postal_code

expect(locations).to include(boston_location)
expect(locations).not_to include(san_francisco_location)

locations.search san_francisco_location.postal_code

expect(locations).not_to include(boston_location)
expect(locations).to include(san_francisco_location)
end

end

http://xunitpatterns.com/Smoke%20Test.html

33

This spec creates two locations and asserts searching by the postal code of
each only returns the closest location. This ensures we create records, geocod-
ing them correctly, and filter locations given a search term.

Finally, we verify we're suggesting the correct location (with the place-

holder attribute on our <input type="text”>) based on IP retrieval. Within
LocationsController, we already exposed a class_attribute :request_geocoding_gatherer,
allowing us to swap out the RequestGeocodingGatherer with a fake object return-

ing a known value ('New York, NY'):

spec/features/guest_receives_suggestion_for_search_value_spec.rb

require 'spec_helper’

feature 'Guest receives suggestion for search value' do
scenario 'only displays locations within the search radius' do
FakeRequestGeocodingGatherer = Struct.new(:request) do
def current_location; 'New York, NY'; end
end
LocationsController.request_geocoding_gatherer = FakeRequestGeocodingGatherer
locations = LocationsOnPage.new

expect(locations.suggested_search_value).to eq 'New York, NY'
end

end

As with any class attribute, we must reset its value after each test:

spec/support/request_geocoding_gatherer.rb
RSpec.configure do |config|
config.around do |example]|
cached_request_geocoding_gatherer = LocationsController.request_geocoding_gatherer
LocationsController.request_geocoding_gatherer = NullRequestGeocodingGatherer

example.run
LocationsController.request_geocoding_gatherer = cached_request_geocoding_gatherer

end

end

34

Unit Tests

In this section, we’ll review the techniques we employ in our unit tests through-
out the stages of application development.

Writing unit tests for our models is initially straightforward. Let’s start with
PostalCode, the object responsible for calculating coordinates given a postal
code:

spec/models/postal_code_spec.rb
describe PostalCode, '#for_geocoding' do
it 'returns a five-digit code’ do
expect(postal_code_for_geocoding('123456')).to eq '12345'
end

it 'pads results' do
expect(postal_code_for_geocoding('1234')).to eq '01234"'
end

it 'handles integer values' do
expect(postal_code_for_geocoding(1234)).to eq '01234"'

end

it 'handles ZIP+4 codes’ do
expect(postal_code_for_geocoding('12345-6789")).to eq '12345'
end

it 'returns nil with a nil value’' do
expect(postal_code_for_geocoding(nil)).to be_nil
end

it 'returns nil with a blank value' do
expect(postal_code_for_geocoding('')).to be_nil
end

def postal_code_for_geocoding(value)
PostalCode.new(value).for_geocoding

end

35

end

These tests cover the base cases for various types of input: nil, '’, integers,
strings without padding and strings longer than five characters:

app/models/postal_code.rb
def for_geocoding
if @value.present?
('%05d" % @value.to_s.gsub(/\A(\d+)(-\d+)?\z/, '"\1').to_i).first(5)
end

end

Next up is ensuring that PostalCode#coordinates works as expected:

spec/models/postal_code_spec.rb
describe PostalCode, '#coordinates’ do
it 'uses the geocoding value to calculate' do
expect(PostalCode.new('02115").coordinates).to eq [
'02115" .to_lat.to_f,
'02115" .to_lon.to_f
]

end

it 'handles postal codes which cannot be converted to coordinates’ do
expect(PostalCode.new(’'12000").coordinates).to eq []

end

it 'handles nil’' do
expect(PostalCode.new(nil).coordinates).to eq []
end

end

app/models/postal_code.rb
def coordinates
if for_geocoding && latlon = for_geocoding.to_latlon
latlon.split(/\,/).map(&:strip).map(&:to_f)

else

36

]
end

end

Geocoding with an External Service

The next step is introducing geocoding with an external service, which we do
with the geocoder gem. Geocoder provides support for stubbing geocoding
requests with its :test lookup.

First, we write our test to determine what to stub:

spec/models/location_spec.rb
describe Location, '#valid?’ do
it 'geocodes with Geocoder' do
location = Location.new(street_line_1: 'Undefined address')
location.valid?

expect(location.latitude).to eq geocoder_stub('nonexistent’).latitude
expect(location.longitude).to eq geocoder_stub('nonexistent’).longitude
end

end

Second, we define GeocoderStub to make the geocoder test stubs easier to in-
teract with:

spec/support/geocoder_stub.rb
module GeocoderStub
def geocoder_stub(key)
result_hash = Geocoder::Lookup::Test.read_stub(key).first
OpenStruct.new(result_hash)
end

end

Third, we add a stub to a geocoder.rb support file:

https://github.com/alexreisner/geocoder
https://github.com/alexreisner/geocoder
https://github.com/alexreisner/geocoder

37

spec/support/geocoder.rb

Geocoder.configure(:lookup => :test)

Geocoder: :Lookup: :Test.set_default_stub [{
latitude: 12,
longitude: 34,

1]

Finally, we include GeocoderStub in our spec helper:

spec/spec_helper.rb

RSpec.configure do |config]|
config.use_transactional_fixtures = false
config.infer_base_class_for_anonymous_controllers = false
config.order = "random”
config.include FactoryGirl::Syntax::Methods
config.include GeocoderStub

end

When we write more complex tests, we’ll need to add a stub that’s specific to
a location. For example:

spec/support/geocoder.rb

Geocoder: :Lookup: :Test.add_stub '12 Winter St., Boston, MA, 02111, US', [{
'latitude’ => 42.35548199999999,
'longitude’ => -71.0608386,

1

Similarly, it's possible to stub geocoding based on IP addresses:

spec/support/geocoder.rb
Geocoder.configure(:lookup => :test, ip_lookup: :test)

spec/support/geocoder.rb
Geocoder: :Lookup: :Test.add_stub '555.555.1.1", [{
"ip' => '555.555.1.1",
'city' => 'New York',
'state’ => 'NY’,

1

38

Testing GeocoderCache

Testing GeocoderCache requires that we stub Rails. cache to return a cache object:

spec/models/geocoder_cache_spec.rb
describe GeocoderCache do
before do
Rails.stub(:cache).and_return ActiveSupport::Cache.lookup_store(:memory_store)
end

With Rails.cache stubbed, we can test assigning, retrieving and deleting cache
keys:

spec/models/geocoder_cache_spec.rb

it 'allows for cache assignment and retrieval’ do
subject['Boston, MA'] = [22.0, 22.0]
expect(subject['Boston, MA']).to eq [22.0, 22.0]

subject['New York, NY'] = [-10.0, -5.0]
expect(subject['New York, NY']).to eq [-10.0, -5.0]
end

it 'allows keys to be deleted’ do
subject['Boston, MA'] = [22.0, 22.0]
subject.del(’'Boston, MA")
expect(subject['Boston, MA']).to be_nil
end

Testing to Ensure Objects are Geocoded Only When Necessary

Writing tests to ensure our objects are only geocoded when the address is
updated indicates that we need to do some refactoring. In our unit test for
Location, we want to be able to spy on the object receiving the method han-
dling geocoding. Currently, the object which receives geocode—the Location
instance—is the system under test:

http://xunitpatterns.com/SUT.html

39

app/models/location.rb
class Location < ActiveRecord: :Base
validates :store_number, uniqueness: true

geocoded_by :address

after_validation :geocode

We'll start by writing a test to help drive our approach to refactoring. In this test,
we rely on an assignable class attribute, geocoding_service, which will handle
the entirety of the geocoding. Assigning an object to this attribute allows us
to inject the dependency in various situations; in this case, we’ll inject a double
within the spec to grant us more control over the resulting coordinates:

spec/models/location_spec.rb
it 'does not geocode when address does not change' do
location = create(:location, :in_boston)
Location.geocoding_service = double('geocoding service', coordinates: nil)

location.valid?

expect(Location.geocoding_service).not_to have_received(:coordinates)
end

To make the test pass, we define a geocoding_service class attribute on Location:

app/models/location.rb
class Location < ActiveRecord::Base
ADDRESS_FIELDS = %w(street_line_1 street_line_2

city state postal_code country_code).freeze

class_attribute :geocoding_service
self.geocoding_service = Geocoder

We also change our after_validation to :set_coordinates so we can call
coordinates (Which Geocoder already defines) on geocoding_service:

app/models/location.rb

after_validation :set_coordinates, if: :geocoding_necessary?

40

app/models/location.rb
def set_coordinates
self.latitude, self.longitude = geocoding_service.coordinates(address)

end

Finally, we reset the geocoding_service class attribute after each test, just as we
did for LocationsController.request_geocoding_gatherer:

spec/support/geocoding_service.rb
RSpec.configure do |config|
config.around do |example]|
cached_geocoding_service = Location.geocoding_service
example.run
Location.geocoding_service = cached_geocoding_service
end

end

Decoupling Our Application From the Geocoding Service En-
tirely

With Location allowing any object be assigned to the geocoding_service class
attribute, we're able to do a significantly larger refactor, wherein we inject a
FakeGeocoder for every test performing geocoding. There are many benefits to
this approach:

1. It allows us to remove spec/support/geocoder.rb: All Geocoder add_stubs
effectively introduce mystery guests.

2. It allows us to be explicit about how each geocoding request works per
test: We can now choose exactly how the geocoder used by our code
responds.

3. It provides a clear seam because we never refer to Geocoder explicitly:
We can swap out Geocoder entirely or introduce an adapter to another
geocoding library with very little work.

We start by removing geocoder.rb and rewriting our test to use a helper we
define, stub_geocoding_request:

http://xunitpatterns.com/Obscure%20Test.html#Mystery%20Guest

41

spec/models/location_spec.rb
context 'when updating location address’ do
it 'geocodes location’ do
stub_geocoding_request '45 Winter St., Boston, MA, 02111, US', 42, -75
stub_geocoding_request '12 Winter St., Boston, MA, ©2111, US', 45, -70

location = create(:location, :in_boston, street_line_1: '45 Winter St.')
location.street_line_1 = '12 Winter St.'
location.valid?

expect(location.latitude).to eq 45
expect(location.longitude).to eq -70
end

end

Next, we define GeocodingRequestStub (the module which contains the new
stub_geocoding_request method) and include it in our spec helper:

spec/support/geocoding_request_stub.rb
module GeocodingRequestStub
def stub_geocoding_request(*strings, latitude, longitude)
strings.each do |string]|
FakeGeocoder[string] = [latitude, longitude]
end
Location.geocoding_service = FakeGeocoder
end
end

spec/spec_helper.rb
RSpec.configure do |config|
config.include GeocodingRequestStub

end

stub_geocoding_request allows for mapping any number of strings (values to be
geocoded) to a specific coordinate. Iterating over the list of strings, we use
each string as a key within our new FakeGeocoder. FakeGeocoder acts as a dictio-
nary object, mapping keys (strings to geocode) to values (a specific coordinate).

42

We test-drive development of FakeGeocoder, ensuring it allows for assignment
(FakeGeocoder.[]=(key, value))and retrieval exactly as we’re using it throughout
the existing system (FakeGeocoder . coordinates(key)). To safeguard against typos
on our end, any attempt to geocode an undefined value raises an exception:

spec/lib/fake_geocoder_spec.rb

require 'spec_helper’

describe FakeGeocoder do
it 'allows for setting and retrieving geocoded values' do
FakeGeocoder['search string’'] = [12, 34]
expect (FakeGeocoder.coordinates('search string')).to eq [12, 34]
end

it 'raises when trying to retrieve a nonexistent value' do
expect do
FakeGeocoder.coordinates('search string')
end.to raise_error /search string/
end
end

The implementation of FakeGeocoder is straightforward; the only method we
don’t test directly is FakeGeocoder.clear, which needs to be run before each
test because the data is stored at a class level:

lib/fake_geocoder.rb
class FakeGeocoder
def self.[]=(key, value)
@values[key] = value

end

def self.coordinates(key)
@values.fetch(key)

end

def self.clear
@values = {}

43

end
end

spec/support/geocoding_request_stub.rb
RSpec.configure do |config]|
config.before do
FakeGeocoder.clear
end
end

We make one additional change to Location: We define our own method,
search_near, which uses the geocoding_service to calculate coordinates and
pass them to the near method defined by the geocoder gem:

app/models/location.rb

def self.search_near(term)
coordinates = geocoding_service.coordinates(term)
near (coordinates)

end

When provided a coordinate, the near scope provided by the geocoder gem
does not geocode the value because the work has been done already; this
ensures all geocoding logic is managed by Location.geocoding_service.

Lastly, LocationsController needs to take advantage of our new scope:

app/controllers/locations_controller.rb
def index
@current_location_by_ip = geocoded_request_information.current_location
@locations = if search_value.present?
Location.search_near(search_value)
else
Location.all
end

end

This decoupling from the geocoder gem is significant; instead of relying on the
geocoder gem throughout the application and its stubs in the test suite, we

https://github.com/alexreisner/geocoder
https://github.com/alexreisner/geocoder
https://github.com/alexreisner/geocoder
https://github.com/alexreisner/geocoder

44

instead rely on a simple interface, coordinates(value) and []=(key, value), to
handle the entirety of our geocoding needs.

Ensuring No External Requests are Made during Geocoding

With geocoding completely handled by FakeGeocoder, we can add the WebMock
gem to verify the application is making no external requests.

First, add the gem to the Gemfile:

Gemfile

group :test do
gem 'capybara’, '~> 2.1.0'
gem 'database_cleaner’, '~> 1.0.1'
gem 'factory_girl_rails', '~> 4.1.0’
gem 'poltergeist’, '~> 1.1’
gem 'shoulda-matchers', '~> 2.2.0'

gem 'webmock', require: false
end

Next, disable all network interaction with WebMock.disable_net_connect!:

spec/spec_helper.rb

This file is copied to spec/ when you run 'rails generate rspec:install’
ENV["RAILS_ENV"] ||= 'test’

require File.expand_path("../../config/environment”, __FILE__)

require 'rspec/rails’

require 'rspec/autorun’

require 'webmock/rspec’
WebMock.disable_net_connect!

Dir[Rails.root.join("spec/support/*x/x.rb")].each { |f| require f }

A green test suite verifies no external geocoding requests are made.

https://github.com/bblimke/webmock

45
CoffeeScript Unit Tests

We'll use Konacha to write unit tests for our CoffeeScript. Konacha relies on
the Mocha test framework and Chai assertion library for executing the tests
and Poltergeist to run the tests in-memory within a rake task.

First, we add Konacha and Poltergeist to the Gemfile:

Gemfile
group :development, :test do
gem 'konacha’
gem 'rspec-rails’, '~> 2.14.0'
end

group :test do

gem 'capybara', '~> 2.1.0’

gem 'database_cleaner’', '~> 1.0.1'

gem 'factory_girl_rails', '~> 4.1.0'

gem 'poltergeist’, '~> 1.1’

gem 'shoulda-matchers’, '~> 2.2.0'
end

We make sure the rake command runs our JavaScript tests as well as our RSpec
tests by adding the konacha: run task to the Rakefile:

Rakefile
task default: ['konacha:run']

We configure Konacha to use Poltergeist in an initializer:

config/initializers/konacha.rb
if defined?(Konacha)
Konacha.configure do |config|
require 'capybara/poltergeist’
config.driver = :poltergeist
end

end

https://github.com/jfirebaugh/konacha
https://github.com/jfirebaugh/konacha
http://visionmedia.github.io/mocha/
http://chaijs.com/
https://github.com/jonleighton/poltergeist
https://github.com/jfirebaugh/konacha
https://github.com/jonleighton/poltergeist
https://github.com/jfirebaugh/konacha
https://github.com/jonleighton/poltergeist

46
We create a spec helper and include application. js:

spec/javascripts/spec_helper.js.coffee

#= require application

Testing ExampleApp.CurrentlLocation

Our first test ensures that CurrentlLocation#getlLocation returns a location upon
successful resolution:

spec/javascripts/current_location_spec.coffee

#= require spec_helper

describe 'CurrentLocation#getlLocation’, ->
describe 'when the deferred object resolves', ->
it 'returns the location', ->

resolution = (defer) -> defer.resolve('Boston’)

currentLocation = new ExampleApp.CurrentlLocation(resolution)
currentlLocation.getlLocation (result) ->
expect(result).to.equal('Boston’)

Next, we assert a default location is returned if the resolution is rejected:

spec/javascripts/current_location_spec.coffee
describe 'when the deferred object is rejected’', ->
it 'returns a default location’, ->
resolution = (defer) -> defer.reject()

currentlLocation = new ExampleApp.CurrentlLocation(resolution)
currentlLocation.getLocation (result) ->
expect(result).to.equal (ExampleApp.CurrentLocation.DEFAULT_LOCATION)

Finally, we ensure that CurrentLocation: :DEFAULT_LOCATION returns the expected
value:

47

spec/javascripts/current_location_spec.coffee
describe 'CurrentlLocation::DEFAULT_LOCATION', ->
it 'returns "Boston, MA"',6 ->
expect (ExampleApp.CurrentLocation.DEFAULT_LOCATION).to.equal 'Boston, MA'

Testing ExampleApp.ReverseGeocoder

To test ReverseGeocoder#location, we’ll need to stub requests to the external
geocoding service. First, we confirm that the success callback is executed if
reverse geocoding is successful:

spec/javascripts/reverse_geocoder_spec. js.coffee

#= require spec_helper

describe 'ReverseGeocoder#location’, ->
context 'when reverse geocoding is successful', ->
it 'reverse geocodes coordinates’, (done) ->
ExampleApp.TestSupport.stubSuccessfulGoogleResponse 'San Francisco', 'CA’

buildGeocoderWithCallback success: (result) ->
expect(result).to.equal 'San Francisco, CA'
done ()

We define ExampleApp.TestSupport.stubSuccessfulGoogleResponse in our spec
helper:

spec/javascripts/spec_helper.js.coffee

geocodeResult = (city, state) ->

L
address_components: [
null,
null,
long_name: city,
null,

short_name: state

48

ExampleApp.TestSupport =
stubSuccessfulGoogleResponse: (city, state) ->
window.google =
maps:
LatLng: (latitude, longitude) ->
'latlng’

Geocoder: ->
geocode: (latLng, callback) ->
callback(geocodeResult(city, state), 'OK')

We define the buildGeocoderWithCallback helper function which returns a jQuery
Deferred object with the provided callbacks configured correctly:

spec/javascripts/reverse_geocoder_spec. js.coffee
buildGeocoderWithCallback = (options) ->
nullCallback = (result) ->
successCallback = options.success || nullCallback
failureCallback = options.failure || nullCallback

reverseGeocoder = new ExampleApp.ReverseGeocoder (12, 34)

$.Deferred(
(defer) -> reverseGeocoder.location(defer)
). then(successCallback, failureCallback)

With the assertions complete when testing a successful resolution, we can now
verify that ReverseGeocoder#location executes the failure callback when reverse
geocoding is unsuccessful:

spec/javascripts/reverse_geocoder_spec. js.coffee
context 'when reverse geocoding is unsuccessful’', ->
it 'does not return a value', (done) ->
ExampleApp.TestSupport.stubUnsuccessfulGoogleResponse ()

http://api.jquery.com/jQuery.Deferred/
http://api.jquery.com/jQuery.Deferred/

49

buildGeocoderWithCallback failure: (result) ->
expect(result).to.be.undefined
done()

spec/javascripts/spec_helper. js.coffee
stubUnsuccessfulGoogleResponse: ->
window.google =
maps:
LatLng: (latitude, longitude) ->
'latlng’

Geocoder: ->
geocode: (latLng, callback) ->
callback(null, 'BAD")

Validating Reverse Geocoding in the Browser

In addition to writing unit tests for CurrentLocation and ReverseGeocoder, it's a
good idea to confirm our application is behaving as expected by viewing it in
the browser. We use ngrok to expose our local server to the Internet, allowing
our application to access the W3C geolocation and Google Geocoding APIs in
the development environment.

Testing the Google Map

We avoid testing the Google Map generated by our ExampleApp.Map class primar-
ily because there’s no good way to make assertions against the Google Maps
JavaScript API without the tests being very brittle. Instead, we verify behavior
by viewing the application in a web browser and interacting with the map.

https://github.com/inconshreveable/ngrok

PartV

Appendices

50

51

Gems

The RubyGem ecosystem is a great place to find existing solutions to geocod-
ing in Rails applications. Here are a few gems which make geocoding easier
within an ORM context.

Geocoder
Geocoder is a gem that touts itself as the “Complete Ruby geocoding solution.”

It supports geocoding, reverse geocoding and distance queries. It works well
with most Ruby ORMs and is under active development.

GeoKit

GeoKit provides a similar feature set to geocoder; however, it is not currently in
active development.

Graticule

Graticule allows geocoding with Google, Yahoo and most other geocoding ser-
vices, and can also be used as a command line tool. It is often used in conjunc-
tion with the acts as geocodable gem, which provides hooks into ActiveRecord
and allows for distance queries.

Area

Area uses public domain data to convert cities to ZIP codes to coordinates; this
allows independence from reliance on an external service.

GeolP

GeolP is a gem which searches the MaxMind GeolP database for a host or
IP address and returns location information (including coordinates). MaxMind
provides free copies of its data as well as a subscription service.

https://github.com/alexreisner/geocoder
https://github.com/imajes/geokit
https://github.com/alexreisner/geocoder
https://github.com/collectiveidea/graticule
https://github.com/collectiveidea/acts_as_geocodable
https://github.com/jgv/area
https://github.com/cjheath/geoip
http://dev.maxmind.com/geoip/legacy/geolite
http://www.maxmind.com/en/geolocation_landing

52
Using PostGIS with Rails and Heroku

Using PostGIS in Your Rails Application

First, make sure you have PostgreSQL 9.1 or higher installed. Then install Post-
GIS 2.0:

0os X

The PostGIS website recommends using Postgres.app to install PostGIS. Alter-
natively, you can use homebrew:

$ brew install postgis

Arch Linux
$ sudo pacman -S postgis

You can find more resources for installing PostGIS on the PostGIS website.

After installing PostGIS on your laptop, follow the steps below to configure your
Rails application.

Create PostGIS extension

If you haven’t created your local database yet, you can simply install the
ActiveRecord PostGIS Adapter gem and add postgis_extension: true to your
database.yml per the instructions below. ActiveRecord PostGIS Adapter will
create the extension when rake db:create is run.

If you've already created your database, run the following commands to install
the PostGIS extension:

$ cd my_application
$ rails dbconsole
=# CREATE EXTENSION postgis;

http://postgis.net/install
https://github.com/dazuma/activerecord-postgis-adapter

53

Confirm that extension was created

=# SELECT POSTGIS_FULL_VERSION();

NOTICE: Function postgis_topology_scripts_installed() not found. Is topology
support enabled and topology.sql installed?
postgis_full_version

POSTGIS="2.0.3 r11128" GE0S="3.3.8-CAPI-1.7.8" PROJ="Rel. 4.8.0, 6 March 2012"

GDAL="GDAL 1.9.2, released 2012/10/08" LIBXML="2.7.8" LIBJSON="UNKNOWN" RASTER
(raster lib from "2.0.2 r10789" need upgrade)
(1 row)

=#
=# \quit

Add ActiveRecord PostGIS Adapter to Gemfile

Gemfile

gem 'activerecord-postgis-adapter’

Configure your local databases

Configure your test and development databases for use with the ActiveRecord
PostGIS adapter. Be sure to set the adapter to postgis and postgis_extension to
true. Setting postgis_extension to true will ensure that the PostGIS extension is
created when the database is created.

Also note that the test database schema_search_path should be setto public. This
ensures that the PostGIS table spatial_ref_sys will be loaded when you prepare
your test database. If schema_search_path is set to public, postgis, PostGIS ta-
bles will not be made available:

config/database.yml
development:
<<: *common
adapter: postgis

encoding: unicode

https://github.com/dazuma/activerecord-postgis-adapter/issues/48#issuecomment-13588779

54

postgis_extension: true
schema_search_path: public, postgis
pool: 5

database: <database_name>

test: &test
<<: *common
adapter: postgis
postgis_extension: true
schema_search_path: public
encoding: unicode
database: <database_name>

Update your DatabaseCleaner strategy

Ensure that your DatabaseCleaner strategy does not remove the PostGIS
spatial_ref_sys table before or between tests:

spec/support/database_cleaner.rb
RSpec.configure do |config|
config.before(:suite) do
DatabaseCleaner.clean_with :truncation, { except: %w[spatial_ref_sys] }
end

config.before(:each, js: true) do

DatabaseCleaner.strategy = :truncation, { except: %w[spatial_ref_sys] }
end
end

Setting Up Continuous Integration with PostGIS

After installing PostGIS locally and adding the PostGIS extension to your local
databases, you should make sure your continuous integration service is con-
figured for PostGIS.

55

Configure database loading on Tddium

Create a worker hook in tddium.yml to ensure that the Tddium database is
PostGIS-enabled:

:tddium:
:postgresql:
:adapter: postgis
:postgis_extension: true
:schema_search_path: public
:hooks:
:worker:
createdb $TDDIUM_DB_NAME;
psql $TDDIUM_DB_NAME -c 'CREATE EXTENSION postgis;';
bundle exec rake db:migrate

Setting Up PostGIS for Heroku

Heroku support for PostGIS is currently available in beta for production-tier
databases.

Configuring your Heroku database
Check to make sure your primary database is a production-tier database

Heroku’s least expensive production-tier option is the Crane database, priced
at $50/month:

$ heroku pg:info --app <your-app>

=== HEROKU_POSTGRESQL_CHARTREUSE_URL (DATABASE_URL)
Plan: Crane

Status: available

Data Size: 1.00 GB

Tables: 2

https://devcenter.heroku.com/articles/postgis
https://www.heroku.com/pricing
https://www.heroku.com/pricing

56

PG Version: 9.2.4

Connections: 5

Fork/Follow: Available

Created: 2013-07-01 09:54 UTC
Maintenance: not required

If your plan is a starter-tier plan (Dev or Basic), be sure to upgrade before setting
up the PostGIS add-on.

Create extension

$ heroku pg:psql --app <your-app>
=# CREATE EXTENSION postgis;

Confirm that extension was created

=# SELECT POSTGIS_FULL_VERSION();
NOTICE: Function postgis_topology_scripts_installed() not found. Is topology
support enabled and topology.sql installed?

postgis_full_version

POSTGIS="2.0.3 r11128" GE0S="3.3.8-CAPI-1.7.8" PROJ="Rel. 4.8.0, 6 March 2012"
GDAL="GDAL 1.9.2, released 2012/10/08" LIBXML="2.7.8" LIBJSON="UNKNOWN" RASTER
(raster lib from "2.0.2 r10789" need upgrade)
(1 row)

=#

=# \quit

Create an initializer to set the database adapter on Heroku

Set the Heroku database adapter and schema search path using an initializer:

https://devcenter.heroku.com/articles/upgrade-heroku-postgres-with-pgbackups

config/initializers/database.rb
Rails.application.config.after_initialize do

ActiveRecord: :Base.connection_pool.disconnect!

ActiveSupport.on_load(:active_record) do
config = Rails.application.config.database_configuration[Rails.env]
config['adapter’] = 'postgis’
config['schema_search_path'] = 'public, postgis’
ActiveRecord: :Base.establish_connection(config)
end
end

Push to Heroku

$ git push staging master

57

	Introduction
	I Strategies
	Geocoding in Rails Applications
	Local Data
	External Services
	Web Requests

	II Application Development
	Introduction
	Search Data Locally
	Plot Points on a Map
	Search Data Externally
	Geocode Existing Data
	Geocode Browser Requests on the Server Side
	Geocode Browser Requests on the Client Side

	III Improving Application Performance
	Introduction
	Cache Results from External Requests
	Geocode Only When Necessary
	Speed Up Proximity Queries with PostGIS

	IV Testing
	Testing a Rails Application with Geocoded Data
	Acceptance Tests
	Unit Tests
	CoffeeScript Unit Tests

	V Appendices
	Gems
	Using PostGIS with Rails and Heroku

