

Domain Name Sanity

Edward Loveall

August 2, 2016

Contents

Introduction 2

Welcome . 2

Who is this book for? . 3

Who is this book not for? . 3

How to Read This Book . 3

Software . 6

Registering A New Domain 7

Types of DNS Records 11

A . 11

AAAA . 12

CNAME . 13

NS . 15

TXT . 17

SRV . 17

MX . 19

ALIAS or ANAME . 21

What If It All Goes Wrong? . 23

i

CONTENTS ii

Tools of the Trade 24

How DNS Works . 24

dig . 26

nslookup . 34

WHOIS . 37

host . 46

ping & ping6 . 49

Common Scenarios 51

Creating a Subdomain . 51

Transferring a Domain . 53

Connecting a Domain to an External Service 56

Remove www From a Domain . 57

Use a CNAME on the Apex Domain . 60

The Website Is Only a Blank or Placeholder Page 61

My Old Website Is Showing Up . 63

Redirect One Domain to Another . 65

Securing Your Website 68

TLS and SSL . 68

Certificates . 70

Be Prepared . 76

Getting a Certificate . 78

Installing a Certificate for nginx . 81

Installing a Certificate for Apache . 85

Wrapping Up . 90

CONTENTS iii

Glossary 92

Appendix 102

Installing tools . 102

Package Management for Mac OS X 105

Package Management for Windows 105

Recommended Registrars . 107

Conclusion 108

Afterword . 108

Thanks . 109

CONTENTS 1

This book is dedicated to my wife, Elizabeth, who is super bummed I finished writ-
ing a book before she did.

Introduction

Welcome

I didn’t start out knowing much about DNS. Sure, I knew there was something
called an “A record” and a “CNAME.” I knew it took “up to 48 hours for changes to
propagate across the web.” I knew that GoDaddy was “terrible.” But when faced
with a placeholder page that said “website coming soon,” I felt like a donkey at a
computer: not sure where to start.

I’m a web developer most days, so stepping through a problem methodically is
my preferred way of working. In DNS, as in development, problems inevitably
arise. Unlike development, however, DNS appears to defy a methodical approach
to solving these problems. The tools and technologies are scattered and often
don’t resemble each other at first glance. Wewill walk through these tools together
so that we can understand more or less how they work, and fix problems as they
appear.

TLS has its own set of quirks, too. It is becoming more and more popular, and
in some cases required, to have a secure website. This is easier said than done,
however. The process involved in procuring and installing a certificate properly
can be daunting to the uninitiated. Don’t worry, though–we’ll look at it in detail.

Finally, because I am a web developer, this book is very website-centric, but all
techniques should work fine for a server with no outward-facing website, such as
an API or an FTP server.

By the time we’re done, you will be able to set up eight different kinds of records,
use six command line tools, deal with a handful of common problems, and make

2

CHAPTER 1. INTRODUCTION 3

a website secure.

Let’s get started!

Who is this book for?

As far as the subject matter for this book goes, I hope to make this whole process
a bit more enjoyable than your average tech book by using lame jokes and silly
examples. Frankly, writing in lame jokes is probably the only way I could ever
finish writing this book.

Broadly, we are going to talk about DNS, how it works, and how to troubleshoot it.
We are also going to look at TLS certificates and walk through not only how they
work, but how to get and install one. If this sounds useful, then welcome.

As far as what you know coming into this book, I imagine you as a developer, or
at a least technically minded individual, are probably a bit curious about how DNS
works behind the scenes and have used a command line at least once in your life.

Who is this book not for?

Have you never touched the command line before and are totally scared of it? Do
you have no interest in having your own website? Then this book is probably not
for you. No harm done, we’ll give you a refund. I’d still urge you to give it a shot,
though. Domains, DNS, and TLS can be very useful things to know about.

How to Read This Book

Considering you are reading with your eyes, this might be a confusing section to
come across. I’ll assume you are literate, but perhaps not familiar with my partic-
ular conventions.

CHAPTER 1. INTRODUCTION 4

New terminology

I will try to define new terms as I go. There is, however, a good chance that I
may assume (wrongly, perhaps) a term is well known enough that I don’t need to
explain it on the spot. I might also accidentally forget to define something. If you
find yourself confused and needing a quick reminder or introduction to a term,
check the glossary where, hopefully, I have defined all the technical terms that
you’re curious about.

Literal text

In the case where I’m trying not to use words to describe things, but to show some-
thing exact, I will specify it in amonospaced font like this. You’ll see this scattered
throughout the book where there is a small piece of text (i.e., one line or less) that
I expect you to type into a field or configuration file.

When we need to use a command line tool like dig, it’s often useful to show an
example of the command and its response. In those situations, I’ll be using code
block formatting, like so:

$ some command

some response

...

I also use this formatting when I’m showing multiple lines of text, like in a configu-
ration file.

Truncation

Three dots ... will represent some kind of truncated response. It’s not that I
couldn’t copy and paste something, but seeing a large block of what looks like
gibberish is draining to read. If something is important, don’t worry, I’ll include it.

CHAPTER 1. INTRODUCTION 5

Shell commands

Also, you may have noticed the dollar sign at the start of the command. This rep-
resents a command I expect you to copy and paste into your shell if you want to
follow along and see a similar response. They also serve to separate commands
from responses.

Note that the dollar sign is not included in the command. It’s what we call the
“prompt.” You’ll probably see something like your computer name, current folder,
and/or username, followed by the dollar sign in your prompt. For brevity, we can
just shorten to the single symbol.

So in a case like this:

$ hello

I just expect you to type the five letters “hello”, not “$ hello”.

Short dig responses

I also use the command line tool dig liberally throughout the book as it’s extremely
useful for inspecting existing domains. It has a relatively verbose response by
default. To try and reign in these responses, I use the +short option on most dig
commands:

$ dig +short example.com

104.131.191.2

Note that you most definitely can leave off the +short part if you want the full,
lengthy response from dig.

The example domain

Inevitably, we’re going to talk about domains in this book about the domain name
system. Instead of trying to stay abstract, I’ve picked a domain we’ll use in exam-
ples: donkeyrentals.com.

https://donkeyrentals.com

CHAPTER 1. INTRODUCTION 6

Why donkey rentals? Mostly it makes the book a bit more fun to read. I couldn’t
type example.com for chapter after chapter and keep my sanity.

It’s also a real domain that works. As much as possible I’ve tried to make all the
example dig queries the same as they are in the book sowe can see them in action.
Feel free to query the domain as much as you like to try and get the hang of any
of the concepts in the book. It’s there for you, dear reader!

Software

Youwill need a few pieces of software to follow alongwith this book. The appendix
at the back of the book should be able to help you install anything missing. The
software you will need is as follows:

• A web browser
• A command line (like the Command Prompt on Windows or the Terminal
on Mac OS X)

On the command line, these pieces of software should be installed:

• dig
• openssl (or equivalent)
• whois

These are optional, but could prove useful anyway:

• host
• nslookup
• ping

If you’re not sure if you have these pieces of software, the appendix contains in-
structions to check each one and install it if it is missing.

Registering A New Domain

Registering a domain isn’t the simplest process. Which, like, duh, that’s probably
why you bought this book. But it doesn’t have to be rocket science either. We
need to figure out if our domain is taken, find a registrar (a company that can sell
us a domain), buy the domain, and, finally, fill out our WHOIS information. Okay,
it does sound a little complicated, so let’s walk through each of the steps.

Step One – Figure Out if the Domain Is Already Taken

Let’s saywewant the domain donkeyrentals.com. To register that name, weneed to
know if it’s already taken. We could go visit the domain in ourweb browser and see
if a website appears, but even if there’s no website, that doesn’t necessarily mean
it’s not registered. Another way is to go to a domain registrar, type in the domain,
and see if it’s taken. There’s a catch, though: domain name front running. This
happens when a company registers a domain as soon as someone has searched
for it. Some registrars have been caught doing this.

To make sure that doesn’t happen, skip the registrar altogether by using the com-
mand line utility whois:

$ whois donkeyrentals.com

whois (pronounced “who is”) retrieves information about who has rights to a do-
main name. Notice I didn’t mention ownership of a domain name. No one ever
actually owns a domain. We’re just leasing it for a certain amount of time. To
confuse things even further, the protocol used by whois to get its information is

7

http://www.domainstate.com/industry-news-6/beware-dont-search-for-names-at-networksolutions-c-85864.html?s=

CHAPTER 2. REGISTERING A NEW DOMAIN 8

also called WHOIS, but with uppercase letters. In summary: we can use whois to
retrieve WHOIS information. Makes sense, right?

Using the command line tool isn’t the only way. We can also use Internic’s WHOIS
service, a site that continues to hold strong to the design aesthetic of the early
1990s. The only caveat of the service is it only supports certain domains, mostly
the more common ones such as .com, .net, and .org.

From now on, I’m not going to use the period for common domains since it’s hard
to read and isn’t technically accurate, so you’ll see com, net, etc. instead.

If donkeyrentals.com is taken, we need to look for a different domain, so let’s try
donkeyrentals.dentist instead. If we’re trying to retrieve WHOIS information for
a domain that Internic doesn’t support, we have to use a special WHOIS server.
So we go to the Root Zone Database, find the top-level domain we’re looking for,
and see if they have a WHOIS server. For this step, I looked up the whois server
for dentist domains and found whois.rightside.co. We can either visit that site to
look up our domain, or we can use the whois tool with the -h option:

$ whois -h whois.rightside.co donkeyrentals.dentist

However, using either method returns a bunch of text. Because there is no stan-
dard for what WHOIS returns, this could be any text. We’re looking for text that,
in so many words, says We have no record of this domain so therefore it’s open
for registration. Common ways to phrase this are: No match for "EXAMPLE.COM" or
No entries found.

We’ll fill out our own WHOIS information later on.

Step Two – Find a Registrar

Now that we know our domain is available, we need to lease it from a registrar.
Picking a registrar is mostly a personal preference, so here’s what I look for:

Wide selection of top-level domains

With so many top-level domains (TLDs) like com, io, co, and equipment, available,
we have to make sure our registrar can handle all the domains we might want
to register. (If you’re looking for business ideas, donkeyrentals.equipment sounds
quite promising. But I’m just the idea guy, so you’ll have to run with it.) Whichever

http://www.internic.net/whois.html
http://www.internic.net/whois.html
https://www.iana.org/domains/root/db
https://www.iana.org/domains/root/db/dentist.html

CHAPTER 2. REGISTERING A NEW DOMAIN 9

domains we want to register, we need to be able to manage them all from one
spot if possible.

A nice control panel

The control panel is where we will spend the most time with a registrar, so it’s
worth researching. This is super important, but harder to know beforehand if the
control panel is good before you sign up with that registrar. Most sites will have
a nice landing page, but some may be hiding a crap control behind it. Ideally, we
can find screenshots of the control panel or use a demo/trial. There’s probably no
perfect registrar out there, but if it looks like the registrar has never heard of a web
designer, we may have to look elsewhere.

Other features

Many registrars offer features beyond domain name administration. Some offer
email, web hosting, or DNS management (which is technically different from do-
main registration). Some offer one-click configuration to set up your domain with
your favorite services. There are even services that just give you a domain for free
when you purchase their other services. Others will totally scam you (this is not
usually a desired feature).

Most of these options are personal preferences, but none of them are critical. It’s
hard to know exactly what you’ll need in the future, but this gives you an idea of
what to look for as you research.

If you’re a bit overwhelmed now and just want a suggestion, here are some of my
favorites.

Step Three – Lease the Domain

The price for a single domain ranges from free all the way up to $100+/year. Some
registrars charge monthly for other niceties like WHOIS privacy, email, or website
hosting. There’s no standard, so they can charge (or not charge) whatever they
want. There are some commonalities among registrars, however. Long-existing
domains like com, net, and org are usually pretty cheap–around $10–while newer
or specialized domains such as luxury and loans generally cost more, just like their
real-world counterparts.

CHAPTER 2. REGISTERING A NEW DOMAIN 10

Step Four – Complete WHOIS Information

After signing up for an account, entering the credit card info, and agreeing to a
terms of service we probably should have read but didn’t, we need to enterWHOIS
information, including, among other things, a phone number, email, and physical
address for administrator, billing, and technical contacts.

Privacy vs legal concerns

We may not want to put sensitive information on the internet, which is under-
standable. We could use non-personal email addresses, POboxes, and fake phone
numbers, but those sound like a lot of work for a simple domain name. Many reg-
istrars offer a service called WHOIS Privacy that lists obscuring information such
as their contact info instead. This can be a nice alternative, but the same info can
also be used to determine who has rights to a domain, so if our info isn’t there, it
can be harder to prove that we own it.

In one case, a registry shut down because its owner spent thousands of dollars of
customer money on liposuction, Escalades, and a Miami Penthouse. As ridiculous
as this sounds, customers who had WHOIS Privacy enabled couldn’t prove that
they had rights to their domains as the site slowly imploded. This is a worst-case
scenario, but it’s important to be aware of the potential tradeoffs ofWHOIS privacy.

Next Steps

Now that we have a domain to play with, we can start talking about all the other
configuration options available to us, such as SSL certificates, email, and subdo-
mains. Right now, the most important task we should be focused on is pointing
our domain to our content or servers. That is done with DNS records, which is
exactly what the next chapter is all about.

https://web.archive.org/web/20120421215616/http://www.businessweek.com/technology/content/mar2007/tc20070309_245992.htm

Types of DNS Records

A

A records are the bread and butter of DNS, and probably the least complex. A
records always (and only) point toward an IPv4 address such as 104.131.191.2. A
good way to remember this is “A for Address.”

Here’s an example of how we could configure an A record:

• Hostname: @
• Record Type: A
• IP Address: 104.131.191.2

The @ symbol means apex domain and has nothing to do with the “at sign” in an
email address. It’s also called the bare, top, root, or naked domain. It’s a fancy way
to refer to the domain without any label in front of it, i.e., donkeyrentals.com rather
than www.donkeyrentals.com. Sometimes you specify the apex domain by putting
nothing for the hostname, but I’ll use @ throughout this book.

Once that record is set up, we can check our work by using dig:

$ dig +short donkeyrentals.com A

104.131.191.2

We’ve made our domain name point to essentially the same thing as the IP ad-
dress. In practice, this only works one way. Since there might be many websites

11

CHAPTER 3. TYPES OF DNS RECORDS 12

hosted at that IP address, we aren’t guaranteed to get to our website when we visit
it. Our server at 104.131.191.2 knows it’s getting a request for donkeyrentals.com
but it must be configured to handle that specific domain, not just the IP address.

We can also use A records with subdomains:

• Hostname: accessories
• Record Type: A
• IP Address: 104.131.191.2

Thiswill set up a similar record as above, but for the subdomain accessories.donkeyrentals.com:

$ dig +short accessories.donkeyrentals.com A

104.131.191.2

Once both A records are set up, we will have an example of more than one web-
site hosted at the same IP address. Our main corporate enterprise’s website is
donkeyrentals.com. For things like diamond-studded donkeyshoes, we have our
accessories site, which is at accessories.donkeyrentals.com. We host both web-
sites at 104.131.191.2, but each have different content.

AAAA

These records are the same as A records, but with one exception: they point
to an IPv6 address instead of an IPv4. IPv6 addresses look something like this:
2620:0000:0861:ed1a:0000:0000:0000:0001. That’s eight sets of four hexadeci-
mal digits, which is way too long. However, they can be severely shortened:
2620:0:861:ed1a::1.

Here’s how to shorten your very own IPv6 address:

• Drop the leading zeros in each section: 2620:0:861:ed1a:0:0:0:1
• Replace consecutive groups of all zeroswith two colons: 2620:0:861:ed1a::1

Also:

CHAPTER 3. TYPES OF DNS RECORDS 13

• If there are more than one group of all zeros, replace the longest group.
• If other groups are the same length, replace the left-most group.

Other than being longer and harder to type, they serve the same function as IPv4:
to be an address for our server. Technically, these are pronounced as “quad-A”
records, but I always scream “AAAAAHHHH!!!!” in my head.

Here’s an example configuration:

• Hostname: @
• Record Type: AAAA
• IP Address: 2620:0:861:ed1a::1

$ dig +short donkeyrentals.com AAAA

2620:0:861:ed1a::1

As the internet runs out of IPv4 addresses, IPv6 is becomingmore important. Soon
you might not even be able to use an IPv4 address.

If you want to visit these addresses in your browser, surround themwith brackets:
http://[2620:0:861:ed1a::1]. This should work for any length of IPv6 address.
In practice I found that these urls are often blocked or not recognized, so your
mileage my vary. If they don’t work for you, ask around to see if someone can try
the address for you.

CNAME

You need to know going into this section that CNAMEs are odd and hard to un-
derstand. They have their uses, which we’ll get into below, but don’t worry if at
first read you are as confused as I was when I began learning about CNAMEs. So
saddle up on your rental donkey and let’s get moving.

CNAME records are the other side of the coin from A and AAAA records. Instead of
pointing toward an IP address, they can only point toward another domain. Think
of CNAMEs as making one domain accessible from another domain. For example,
a common configuration is to point www toward our apex domain so both addresses
display the same website:

http://www.bbc.com/news/technology-19600718

CHAPTER 3. TYPES OF DNS RECORDS 14

• Hostname: www
• Record Type: CNAME
• Target Host: donkeyrentals.com

$ dig +short www.donkeyrentals.com CNAME

donkeyrentals.com.

Now www.donkeyrentals.com will point to donkeyrentals.com.

That’s not all. You can also point a CNAME record at any domain, even one that
isn’t ours:

• Hostname: redirect
• Record Type: CNAME
• Target Host: rabbitrentals.com

$ dig +short redirect.donkeyrentals.com CNAME

rabbitrentals.com.

Now, when people try to visit redirect.donkeyrentals.com, they get hopped over
(see what I did there?) to our competitor’s site.

When to Use CNAMEs

Why would we use a CNAME record instead of an A? Well, for the most part, you
wouldn’t. A records are preferred because they are muchmore direct. When your
browser sees an A record, it gets an IP address. That’s it. Requesting a CNAME
record is different. It looks up the record, sees that it’s a CNAME, looks at what the
record is pointing toward, and then restarts the request. This will make requests
take longer to get to our final, glorious IP address.

CNAMEs also have limits. For example, we can’t use a CNAME record on the apex
(@) domain. If you want to point the plain donkeyrentals.com to another domain
with DNS, you’re out of luck (with the exception of ALIAS records, see below). Also

CHAPTER 3. TYPES OF DNS RECORDS 15

CNAME records can never exist with other record types for the same hostname.
Imagine our www pointing to rabbitrentals.com with a CNAME record, and also to
our server’s IP address with an A record. We have no way of knowing whether to
use the CNAME record or A record, and each could have different outcomes.

For the most part, A records are the way to go when we want to connect a domain
to a website or service. But sometimes CNAMEs are the better (or only) choice.
If we want an honest-to-goodness alternate name for the same domain, CNAMEs
are it. Or, for services like Heroku, we need to use a CNAME to point our domain
to an app we created. Heroku hosts lots of websites on many servers where the
IP addresses can change at any time, so there’s no IP address where we can point
an A record.

See the Common Scenario on using a CNAME on the apex domain to learn more.

CNAMEs vs Subdomains

There’s a lot of confusion about the difference between a CNAMEand a subdomain
(at least therewas formewhen I started learning). They are two separate concepts,
and it’s important to understand both.

We might hear www talked about as a subdomain of donkeyrentals.com or as a
CNAME record for the donkeyrentals.com domain. But which one is it?

Technically, www by itself is a hostname (referred to in the RFC 882 with a space
as in “host name”). Hostnames are neither subdomains nor CNAME records. The
subdomain is the full www.donkeyrentals.com, and www is the hostname at the begin-
ning. (It’s common to call www the subdomain even if that’s technically incorrect.)

There’s also the www entry in our domain’s DNS records. It’s not unusual for this to
be a CNAME record, but it doesn’t need to be. We can have www be an A record, NS
record, or any other kind of record. Speaking of NS records…

NS

Nameserver (NS) records are the first point of contact to the outside world we
as domain administrators are responsible for. In fact, the dig command we’ve
been using is asking the nameservers to get its information. NS records are often

https://devcenter.heroku.com/articles/custom-domains#configuring-dns-for-subdomains
https://tools.ietf.org/html/rfc882#page-9
https://tools.ietf.org/html/rfc882#page-7

CHAPTER 3. TYPES OF DNS RECORDS 16

neglected when setting up or changing a domain. Most people just skip right to
those attractive and charismatic A and CNAME records.

So what do NS records point to? Each one points to a server that holds all the
records we create. Usually, we’ll configure two or more nameservers when setting
up a domain. That way, if one is offline, the other can pick up the slack. Here’s
how it might look:

• Nameserver 1: ns1.example.com
• Nameserver 2: ns2.example.com
• Nameserver 3: ns3.example.com

Nameservers are often in the formof nsX.example.comwhere X is a number starting
at 1 and example.com is the website where you registered your domain. This isn’t a
standard, just a convention. If you had to guess what the nameservers are, start
here.

In all the domain tech support I’ve done, wrongly set nameserver records are the
most common source of confusion for newcomers. If they’re set wrong, nothing
will work because the nameserver finds all the other records in your domain. If
you find that your domain points to some placeholder page, it’s likely that your
name servers are wrong.

Imagine you were looking someone up in a phonebook for the wrong town. You
wouldn’t be able to find that person. The phonebook here is the nameserver, and
each person here is a record. Wrong nameserver, wrong records.

We can check our configuration with dig:

$ dig +short donkeyrentals.com NS

ns1.hover.com

ns2.hover.com

This isn’t as useful as youmight think. Since dig uses the nameservers to get infor-
mation, asking for those nameservers is a bit cyclical. It’s like calling someone up
to ask them for their phone number. Looking up NS records with dig is still useful
to find out if your nameservers are incorrect, but it’s not useful for figuring out the
right ones.

CHAPTER 3. TYPES OF DNS RECORDS 17

TXT

TXT (text) records are incredibly simple. They are a string of text connected to a
hostname. But since they are so simple and their purpose is undefined, they are
very much the “other” type of record. For example:

• Hostname: message
• Record Type: TXT
• Value: Welcome to Donkey Rentals!

$ dig message.donkeyrentals.com TXT +short

"Welcome to Donkey Rentals!"

So, what’s the point? Why would we want these? Sometimes extra metadata is
useful. We can use it to prove that we do, in fact, have control over this domain.
Email services use TXT records to help prove that email coming from our email
addresses is actually from us. Spammers can’t fake our email address so easily
then. This is also true for SSL/TLS certificates.

Another example: clever programmers have used TXT records to extendwhat DNS
records can do. In the CNAME section above, we were talking about how we can’t
use CNAMEs on the apex domain. ALIAS records (see below) allow us to do this,
but ALIAS records aren’t standard. It’s all a clever use of TXT records.

SRV

SRV (service) records exist tomake it easier to connect to a specific service on a spe-
cific port. By “service” I mean something other than awebsite, such asMinecraft. It
uses SRV records to help players to connect to amultiplayer onlineMinecraft game
by typing play.donkeyrentals.com instead of 92.112.56.78:9000. SRV records can
also provide server prioritization and load balancing. We’ll get into all this below.

Our pretend Minecraft server runs on a machine just like our website does. We
can contact it at an IP address 92.112.56.78 and on a specific port 9000. Normally,
players would have to enter that IP address and port number to connect to our

https://minecraft.net

CHAPTER 3. TYPES OF DNS RECORDS 18

server, but all those numbers are a pain to remember. Good thing DNS is, in fact,
built to solve this problem.

Instead of an IP address, we’ll have our players connect to the server at
play.donkeyrentals.com. We’ll need to set up an A or AAAA record for the play

hostname. We’ll set up the SRV record next, but first we need to have a few pieces
of information.

When defining how users connect to a service, each developer (in this case,
Minecraft) defines certain aspects of the service, such as the name and protocol.
The name for Minecraft is, unsurprisingly, minecraft, and the protocol is tcp.
These pieces of data get an underscore in front of them. Put them together and
we get: _minecraft._tcp.

Next, we add the first part of the domainwe cameupwith earlier: play. This should
not have an underscore and comes right after the protocol: _minecraft._tcp.play.
Are you ready to set up theDNS record yet? Nope. Too bad! We still have twomore
things to talk about: priority and weight.

Priority and weight

Briefly: priority chooses one server over another and weight distributes the load
between multiple servers.

Less briefly: If a service has more than one SRV record for primary and backup
servers, priority is a way to specify that we want one server used before trying
another. For example, normally we want people to just use the primary server.
But if it’s offline, we can use the backup server instead. We’ll start with the lowest
number andwork our way up until a server responds. Because of this “lowest first”
mechanism, priority is often called distance or preference. Priority is a number
between 0 and 65535, in case you’re a rich person and have 65,000+ servers.

Weight is similar, but works differently. Just like priority, it’s a number between 0
and 65535. Instead of a server getting used before another, the load will spread
out according to theweight value. Weight only applies when there are two ormore
SRV records with the same priority.

Imagine we have two containers of different sizes for collecting water, a bucket
and a cup. They’re both perfectly fine containers that we can use at the same
time (same priority) but bucket is twice the size of cup. When we fill them both to

CHAPTER 3. TYPES OF DNS RECORDS 19

capacity, we’ll put two drops of water in bucket for every drop we put in cup. So
theweight for bucketwill be 2 and cupwill be 1. This is how weights in SRV records
work, except instead of drops of water, it’s connections to the server. (Water is not
great for servers.)

Ok, now we can set up our SRV record:

• Hostname: _minecraft._tcp.play
• Record Type: SRV
• Priority: 1
• Weight: 1
• Port: 9000
• Value: play.donkeyrentals.com

$ dig +short _minecraft._tcp.play.donkeyrentals.com SRV

1 1 9000 play.donkeyrentals.com.

Note the play in the Hostname relates to the play in the Value. Whatever users
type to get to your server (e.g. play.donkeyrentals.com), the first part must match
up to the last part of the Hostname.

In this example, I chose 1 for the Priority andWeight because, when we only have
one server, it doesn’t matter which one gets picked first or how often it’s used.

This isn’t the only way to set up an SRV record, as they can vary widely by service.
We’ll want to check the documentation from the provider (e.g., Minecraft) to make
sure we’ve set ours up the right way.

MX

MX (Mail eXchange – the X looks cool that way) records are for email. In the same
way A or CNAME records point to a website, MX records tell email where to go on
the internet. If you break apart an email address like eeyore@donkeyrentals.com,
you have two parts: eeyore and donkeyrentals.com. MX records are only concerned
with the second part: donkeyrentals.com.

CHAPTER 3. TYPES OF DNS RECORDS 20

Your email provider (Gmail, Hotmail, Fastmail, etc.) will have a list of servers you
need to make MX records for. First, let’s try to set one up:

• Hostname: @
• Record Type: MX
• Priority: 10
• Value: aspmx.l.google.com

This is part of the configuration for Gmail. We’ll walk through it step by step.

Remember, the @ in the Hostname is for the apex domain and has nothing to
do with the @ in an email address. It represents the domain without anything in
front of it, i.e., google.com not www.google.com. We’re saying we want to configure
the server for emails that get sent to <anything>@donkeyrentals.com. We’re not
concerned about email sent to other subdomains, just this one.

The record type (MX in this case) should be pretty obvious. We’re talking about MX
records after all.

Priority is the same as in SRV records. A lower number means this server will be
used before any other server is tried. There can be multiple mail servers for a
particular domain. If one server is down or unavailable, it will try the next one in
the list.

Finally, the Value is the domain name of a server. This configuration might look
similar to a CNAME record, but the domain namewe point tomust be an A or AAAA
record, i.e., we can’t point an MX record to a CNAME or other type of record. It has
to go to a domain that points directly to an IP address.

We can now verify the record:

$ dig +short donkeyrentals.com MX

10 aspmx.l.google.com

How email uses MX records

Let’s take a second to talk about how email uses these records. When an email
server needs to deliver to donkeyrentals.com, it looks up MX records for that do-
main. We just did the same thing for our domain. But let’s pretend there are a

CHAPTER 3. TYPES OF DNS RECORDS 21

bunch of servers instead of just one. This is a much more common scenario:

$ dig +short donkeyrentals.com MX

5 gmail-smtp-in.l.google.com.

10 alt1.gmail-smtp-in.l.google.com.

20 alt2.gmail-smtp-in.l.google.com.

30 alt3.gmail-smtp-in.l.google.com.

40 alt4.gmail-smtp-in.l.google.com.

The mail server first tries the record with the lowest priority on the list,
gmail-smtp-in.l.google.com., and looks up its IP address. Remember that
all MX records must point to an A or AAAA record, so they will always resolve to
an IP address:

$ dig +short gmail-smtp-in.l.google.com A

173.194.205.27

Then it tries to send the email data. If it fails, it moves on to the item with the next
server alt1.gmail-smtp-in.l.google.com., which is next lowest in priority. Themail
server tries server after server until either one succeeds or they all fail.

It might seem weird to use the server with the lowest priority first. For that rea-
son, priority is often called distance. That way, we can think of it as starting with
closer servers first then moving outward. Of course, this has nothing to do with
the physical location of the servers. It’s just a mental model to help remember
how this number works.

ALIAS or ANAME

These records are a special case because, as of this writing, very fewDNS providers
implement them. When they are implemented, their names and implementations
vary wildly. So why are we even talking about them? Because they let us do a very
special thing: point the apex domain to a non-address record.

CHAPTER 3. TYPES OF DNS RECORDS 22

“But didn’t you say that the apex domain has to point to an IP address?” Yes, I lied.
Sort of. It’s technically true; according to long and boring documents, the apex
domainmust not use a CNAME record. Despite this, some DNS hosts have started
creating new features outside these rules.

DNSimple is using TXT records to point apex domains just like a CNAMEdoes. They
call this an ALIAS record. DNS Made Easy has a similar feature called ANAMEs. I
want to stress again that these are non-standard uses of DNS technology only avail-
able through limited DNS providers. Each providers’ implementation is entirely
different. They make me nervous.

Even so, they can be useful. For example, I mentioned that Heroku instructs cus-
tomers to use these records so an apex domain can point toward a Heroku app.

Since these aren’t the same across the board, I can’t promise this is how we’ll have
to set one up. But it will likely work something like this:

• Hostname: @
• Record Type: ALIAS
• Target Host: someotherwebsite.com

When we want to test our setup, if we’re lucky, our DNS provider will let us ask it
about ALIAS or ANAME records directly:

$ dig +short donkeyrentals.com ALIAS

104.131.191.2

But again, these are non-standard record types, so we may have to resort to alter-
nate methods:

$ dig +short donkeyrentals.com TXT

"ALIAS for someotherwebsite.com"

Notice we looked for a TXT record here. That’s how DNSimple does it, but it
might work some other way entirely! That’s the brave new world of non-standard
records. Exciting, no? (ALIAS records. Coming soon to a theater near you.)

http://tools.ietf.org/html/rfc1034#page-15
http://tools.ietf.org/html/rfc1034#page-20
http://support.dnsimple.com/articles/alias-record/
http://help.dnsmadeeasy.com/managed-dns/records/aname-records/
https://devcenter.heroku.com/articles/custom-domains#add-a-custom-root-domain

CHAPTER 3. TYPES OF DNS RECORDS 23

What If It All Goes Wrong?

Wecovered a lot of ground in this chapter. If everythingwentwell, we have all sorts
of records pointing at many servers. But what if we screwed up? (Don’t worry, we
will.) How can we fix it? Even in a best-case scenario, how can we get precise
information about our domains? Tune in next chapter to find out what happens
in Daring Domains Debugged!

Tools of the Trade

How DNS Works

There are many steps between typing a URL into our browser and seeing the web-
site. It’s all very complicated, but there’s a method to the madness. To debug our
domains, we’ll need a quick primer in the deep, dark ways of the domain name
system.

Root Servers

All domains start somewhere, and that somewhere is the root servers. There are
13 root servers labeled a through m. To see them, simply type dig +short:

dig +short

a.root-servers.net.

b.root-servers.net.

c.root-servers.net.

d.root-servers.net.

e.root-servers.net.

f.root-servers.net.

g.root-servers.net.

h.root-servers.net.

i.root-servers.net.

j.root-servers.net.

24

CHAPTER 4. TOOLS OF THE TRADE 25

k.root-servers.net.

l.root-servers.net.

m.root-servers.net.

Told you.

These are nameservers. The order they are in doesn’t matter. We can use any of
them. Each one stores the information needed to contact all top-level domains like
com, net, horse, etc. The com nameservers in turn store information about Hover,
the DNS provider I use for donkey rentals. Finally, hover has information about
donkeyrentals.com.

That’s how DNS works: each server looks in its database to find out how to get
to the next level below it. To get to any domain, we have to go through all these
steps. Well, we don’t have to go through all those steps. Software called a resolver
does.

The Resolver

The piece of software that actually makes these requests is called a DNS resolver.
Its job is to turn, or resolve, donkeyrentals.com into 104.131.191.2 by taking all the
steps above. Tools like dig let us see what the resolver sees so we can confirm our
DNS settings.

Dig lets us act like a resolver. We can see the whole chain of server inter-
actions laid bare, which then lets us see where things are misconfigured.
For example, if we’re expecting the nameservers for donkeyrentals.com to be
ns1.equestrian-domains.com and they are, in fact, ns1.bovinian-domains.com, we
have a problem. If we expect www.donkeyrentals.com to be a CNAME that points
to donkeyrentals.com, but it instead points to buzzfeed.com, we have a different
problem.

Caching

The other thing to know about DNS is that each step in the resolution process gets
cached. When the resolver asks com for information about donkeyrentals.com, it
gets stored for some amount of time, which can be seconds to days, depending
on the server.

CHAPTER 4. TOOLS OF THE TRADE 26

The reasoning here is simple: if the whole chain was traced every time anyone in
the entire world wanted to go to a website, it would put an enormous load on the
root servers. With only 13 root servers, that would be billions of requests a day.
In reality, each letter points to multiple servers. But even if there were 500+, that’s
still too much traffic for a server to handle.

That should be enough to get us started with my very favorite debugging tool: dig.

dig

So far, we’ve been using the dig command throughout this book to check our DNS
handiwork. It stands for Domain Information Groper (ew), and its sole job is to
get information about DNS records. This thing is our Swiss Army knife for DNS
debugging.

If you don’t have dig installed on your machine, you can install it. If that seems to
complicated, internet nerds have recreated dig’s functionality on the web. Search for
“dig web interface” and you should find a few tools.

Dig Basics

The first step with dig is to look up A records:

$ dig donkeyrentals.com

; <<>> DiG 9.8.3-P1 <<>> donkeyrentals.com

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 26538

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:

;donkeyrentals.com. IN A

;; ANSWER SECTION:

donkeyrentals.com. 842 IN A 104.131.191.2

CHAPTER 4. TOOLS OF THE TRADE 27

;; Query time: 7 msec

;; SERVER: 192.168.128.1#53(192.168.128.1)

;; WHEN: Thu Jun 2 10:16:46 2016

;; MSG SIZE rcvd: 51

The command breaks down like this:

• dig – The command.
• donkeyrentals.com – The domain we’d like information for.

The response breaks down like this:

• Header – We can safely ignore this for now. For the curious, this section
shows us information about the response, such as what type of response it
is (opcode: QUERY), what flags are present (flags: qr rd ra;), andwhat types
of responses we got (QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0).

• Question section – Also unimportant. It’s only confirming what we asked
for: A records for donkeyrentals.com.

• Answer section – This is the part we care about because it contains the in-
formation we asked for.

• Statistics – This is meta information about our request, such as how long
it took, how large it was, and what server was queried. Not important for
now, but this will come up later.

(Now, I know you’re thinking, “Wow, this is captivating reading! Where can I learn
even more?!” RFC 1035 from the Internet Engineering Task Force is a great place
to start if you really want to dive into the weeds here.)

Other Record Types

By default, dig looks up A records for our domain (just the apex domain, not any
subdomains) and, as we can see, it returned 104.131.191.2, the IP address of our
apex domain’s A record. We can look up other record types as well:

http://www.ietf.org/rfc/rfc1035.txt

CHAPTER 4. TOOLS OF THE TRADE 28

$ dig message.donkeyrentals.com TXT

; <<>> DiG 9.8.3-P1 <<>> message.donkeyrentals.com TXT

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 50384

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:

;message.donkeyrentals.com. IN TXT

;; ANSWER SECTION:

message.donkeyrentals.com. 900 IN TXT "Welcome to Donkey Rentals!"

;; Query time: 22 msec

;; SERVER: 192.168.128.1#53(192.168.128.1)

;; WHEN: Thu Jun 2 10:17:36 2016

;; MSG SIZE rcvd: 82

Hidden in the response here, we can see the TXT record (“Welcome to Donkey
Rentals!”) we added in the previous chapter. Any of the other record types we
talked about there are available too.

Query Options

Up until this chapter, I’ve been using dig with the +short query option to just get
the bare minimum information we needed. Dig’s query options all have a + at the
start:

$ dig +short donkeyrentals.com

104.131.191.2

What order these options come in does matter. Always put the query option before the
domain we’re querying for. I’ve seen some wacky output when the query option comes
after the domain.

http://serverfault.com/questions/431080/dig-show-only-answer#comment-462136

CHAPTER 4. TOOLS OF THE TRADE 29

The dig manual lists many query options besides +short we can look through at
our leisure, but for now I’ll point out a few of the more useful ones:

• +trace

At the beginning of this chapter, we talked about howDNS queries travel through a
chain of servers before finally getting to our domain. This will illustrate that whole
process. Try it!

• +noquestion, +noanswer, +noadditional, and +noauthority

Query options can also have no at the start to remove some functionality. These
query options are all ways to limit the response dig gives back to us. If we never
care about the QUESTION section, for example, we can simply turn it off and make
dig’s response much less wordy.

Common Use Cases

Just the answer section

Dig has a query option called +noall that, as we might expect, turns off all output.
It’s not very useful by itself, but combined with a different query option such as
+answer, gives us only the sections we want:

$ dig +noall +answer donkeyrentals.com A

donkeyrentals.com. 900 IN A 104.131.191.2

Records without the cache

As we know, there’s lots of caching involved in DNS. Since all of our DNS records
exist on anameserver, we can ask that nameserver directly andbypass any caching
information:

http://ftp.isc.org/isc/bind9/cur/9.9/doc/arm/man.dig.html

CHAPTER 4. TOOLS OF THE TRADE 30

$ dig @ns1.hover.com donkeyrentals.com A

; <<>> DiG 9.8.3-P1 <<>> @ns1.hover.com donkeyrentals.com A

; (1 server found)

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 44948

;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; WARNING: recursion requested but not available

;; QUESTION SECTION:

;donkeyrentals.com. IN A

;; ANSWER SECTION:

donkeyrentals.com. 900 IN A 104.131.191.2

;; Query time: 41 msec

;; SERVER: 216.40.47.26#53(216.40.47.26)

;; WHEN: Thu Jun 2 10:19:58 2016

;; MSG SIZE rcvd: 51

In this case, we ask the name server ns1.hover.com what the A records are for
donkeyrentals.com. You might think, “Isn’t this what we’ve been doing all along?”
Yes and no. The first time we ask for donkeyrentals.com, it gets the uncached an-
swer from ns1.hover.com, but then our DNS server (or network router, or inter-
net service provider, or myriad other places) stores it in their cache for a certain
number of seconds, represented by the 900 (15 minutes) in the answer line. That
number, by the way, is called Time to live or TTL.

Theoretically, after those 15 minutes pass, we’ll get the uncached answer again,
or at least the cache will have updated to display more up-to-date information if
anything has changed.

To force our domain resolver to get the latest information, we can say, “No, do not
ask our caches, ask the server directly for information.” We can tell that we got an
authoritative answer by looking at the flags in the header: flags: qr aa rd. That
aa stands for Authoritative Answer. Also, in the stats at the bottom, we can see
that we queried the server at 216.40.47.26, which is actually what the A record for
ns1.hover.com points to. If we don’t tell it which server to query, it will use the DNS

CHAPTER 4. TOOLS OF THE TRADE 31

server we have configured for our computer.

Multiple Queries at Once

If we have a bunch of queries to make, dig has a batch mode. First, we’ll need a
file with a list of queries. This list will look a lot like our dig commands so far, but
there will be no dig at the start, and each query will have its own line:

dig.txt

@ns1.hover.com donkeyrentals.com

www.donkeyrentals.com CNAME

+short donkeyrentals.com NS

The, we use dig with the -f flag:

$ dig -f dig.txt

... not gonna paste all the responses here ...

This will make all the queries in order. Feel free to use query options here, too,
like +short to make all queries have short responses:

$ dig +short -f dig.txt

... no really, pixels are surprisingly expensive ...

Looking Up a Domain Name by It’s IP Address

So far, we’ve been looking up domain names to get their IP addresses, but can we
do this in the other direction? We can indeed. This is what the -x flag is for:

$ dig +short -x 66.220.156.2

edge-star-shv-07-ash4.facebook.com.

CHAPTER 4. TOOLS OF THE TRADE 32

This returns a PTR record. We didn’t cover these in the last chapter because we
don’t ever get to actually configure them. Briefly, PTR stands for pointer and they
point back to the original domain. In this case, we can see that it’s a server at
facebook.com.

Now, keep in mind this doesn’t point back to a website, but to a server. If
somewebsite.com is hosted at somehost.com with many other websites, a re-
verse lookup is more likely to show someserver.somehost.com rather than
somewebsite.com. Facebook is so large they host their website on many servers,
so they’re easier to track down. Since it’s not always accurate, I use these reverse
lookups more as a hint than an answer.

Another anecdote is that the “reverse DNS lookup” database is hosted at
in-addr.arpa domain. All lookups happen by reversing the sections of the ip
address and prepending the result to in-addr.arpa. So, if you’re trying to look up
12.34.56.78, you can also use dig 78.56.34.12.in-addr.arpa PTR.

Curiosities

What does the INmean?

In dig responses, we often see IN in the response:

;; QUESTION SECTION:

;donkeyrentals.com. IN A

This doesn’t mean “in” like “A records all up in ya donkeyrentals” but is short for
“Internet”. Turns out all records have a class. Other classes are like an entirely
separate internet and have nothing to do with this book. For our uses, we are
always using the IN (Internet) class. That’s also the class that dig defaults to. It can
also be CH (Chaos) or HS (Hesiod), but we won’t be talking about these no matter
how rad they sound.

Why do records get returned in a different order?

When we ran dig to see all the root servers, they may have come back in a seem-
ingly random order. This is called round-robin DNS. When we get back a list of IP

https://en.wikipedia.org/wiki/Chaosnet
https://en.wikipedia.org/wiki/Hesiod_(name_service)

CHAPTER 4. TOOLS OF THE TRADE 33

addresses from a DNS query, a domain resolver will generally start with the first
address in the list. If the first server doesn’t respond, it will pick the next one, and
so on.

To make sure one server doesn’t take all the heat, DNS providers can change the
order in which the records are returned. This helps distribute requests across
multiple servers. Not all DNS providers do this, and it’s not always done in the
same way, but keep an eye out for it.

Why does the TTL value change drastically?

While writing this book, this was a common scenario I ran into:

$ dig somedomain.com A

somedomain.com. 127 IN A 12.34.56.78

$ dig somedomain.com A

somedomain.com. 125 IN A 12.34.56.78

$ dig somedomain.com A

somedomain.com. 541 IN A 12.34.56.78

Dig responses shortened to save pixels. Consider donating to the Save-A-Pixel founda-
tion for America.

What’s going on here? We made a request to get the A records at somedomain.com.
We see the TTL for the first request is 127. Then, a couple of seconds later, we
make the same request and see that the TTL has decreased by 2 seconds to 125.
Seems about right. Finally, after another couple of seconds, we make the request
a third time and get 541. What?!

This is a perfect example of round-robin DNS. Just as I described above, DNS
providers change the order of DNS records. So, in this case, let’s say there were
looking at two servers, A and B. We saw the TTL value for server A, and then again

CHAPTER 4. TOOLS OF THE TRADE 34

for server A after it had decreased slightly. Then we saw server B, which has a
totally different TTL value.

It’s pretty normal to see this, so don’t let it phase you, but it is certainly jarring and
confusing the first time.

nslookup

I like dig. It’s a good tool for debugging, probably the best. But one problem with
dig is that it’s not installed on the Windows operating system by default. That’s a
bummer if we need to do some quick DNS troubleshooting. Sure, you could use
one of dig’s many online interfaces, but it doesn’t have that new command line
smell.

There’s another tool called nslookup that, for the most part, does everything dig
does, but there are a couple caveats.

Nslookup is a part of BIND, a suite of software tools for running DNS servers. BIND
includes a bunch of tools, including nslookup and dig. ISC, the company thatmain-
tains BIND, states in the BIND manual, page 9:

“ Due to its arcaneuser interface and frequently inconsistent behavior,
we do not recommend the use of nslookup. Use dig instead.

Talk about an authoritative answer! (Wink to camera.)

That’s not all, though. nslookup performs other unnecessary queries in the back-
ground. Not only are these useless, but they can actually screw up the response
nslookup returns. This won’t matter for most requests, but if those initial, unnec-
essary queries fail, it can stop our query in its tracks.

These flaws are unfortunate because alternate tools can be very useful. But I’d
recommend you avoid nslookup altogether. You can read more about the flaws
in nslookup here and here.

Basic Usage

Anyway, if you skipped the last few paragraphs let’s start with the most basic ex-
ample, looking up A records for donkeyrentals.com:

https://www.isc.org/downloads/bind/
https://kb.isc.org/article/AA-01031
http://homepage.ntlworld.com/jonathan.deboynepollard/FGA/nslookup-flaws.html
http://cr.yp.to/djbdns/nslookup.html

CHAPTER 4. TOOLS OF THE TRADE 35

$ nslookup

> donkeyrentals.com

Server: 192.168.128.1

Address: 192.168.128.1#53

Non-authoritative answer:

Name: donkeyrentals.com

Address: 104.131.191.2

The biggest difference with nslookup is the way you use it. Type nslookup and
hit enter. This brings up what’s called interactive mode. You can type commands
herewithout having to type nslookup first. The commandprompt here is indicated
with > instead of $. Type exit or hit ctrl-c to leave this mode and go back to the
terminal.

There is a way to use nslookup without single, one-off commands, but by far the most
common way I’ve seen it used is in this interactive mode.

We can type domain names and get their A records, just like dig. That’s the first
step. Here are some examples of other queries:

Getting a Little More Info

The debug setting can give you a more dig-like response, including the question
and TTL if you want them:

> set debug

> donkeyrentals.com

Server: 192.168.128.1

Address: 192.168.128.1#53

QUESTIONS:

donkeyrentals.com, type = A, class = IN

ANSWERS:

-> donkeyrentals.com

internet address = 104.131.191.2

ttl = 576

CHAPTER 4. TOOLS OF THE TRADE 36

AUTHORITY RECORDS:

ADDITIONAL RECORDS:

Non-authoritative answer:

Name: donkeyrentals.com

Address: 104.131.191.2

To turn this off, type set nodebug at the prompt.

Look Up Other Record Types, Such As NS

> set type=ns

> donkeyrentals.com

Server: 192.168.128.1

Address: 192.168.128.1#53

Non-authoritative answer:

donkeyrentals.com nameserver = ns1.hover.com.

donkeyrentals.com nameserver = ns2.hover.com.

Authoritative answers can be found from:

ns2.hover.com internet address = 64.98.148.13

ns1.hover.com internet address = 216.40.47.26

We set the type to ns, cname, mx, or any of the other types. We can use set type=

again to set it to a different type.

Get an Authoritative Answer

We can set the server similarly to how we specify a server with dig:

> server ns1.hover.com

Default server: ns1.hover.com

Address: 216.40.47.26#53

CHAPTER 4. TOOLS OF THE TRADE 37

> donkeyrentals.com

Server: ns1.hover.com

Address: 216.40.47.26#53

donkeyrentals.com nameserver = ns1.hover.com.

donkeyrentals.com nameserver = ns2.hover.com.

This attempts to query a nameserver directly instead of using cached information.

Looking Up a Domain Name by Its IP Address

This one is super simple. Just enter the IP address:

> 66.220.156.2

Server: 192.168.128.1

Address: 192.168.128.1#53

Non-authoritative answer:

2.156.220.66.in-addr.arpa name = edge-star-shv-07-ash4.facebook.com.

That’s nslookup in a nutshell. It can be useful, but I would still avoid it. It’s not
worth hours of frustration because it interpreted a response wrong or failed when
it shouldn’t have. Stick to dig if you can.

WHOIS

Let’s clear up one thing real fast: WHOIS in all caps is a protocol, while whois in all
lowercase is a command line tool. They are related but not the same thing. The
whois tool uses the WHOIS protocol to retrieve information about a domain. We’ll
be interacting with whois directly and WHOIS indirectly.

The information we get using whois is different for every domain. The most com-
mon and useful pieces include contact information for the person or company that
registered the domain and/or the expiration date of that domain. The catch is that

CHAPTER 4. TOOLS OF THE TRADE 38

this information has no standard to it. It can be any information, in any format. As
we’ll see, this can make working with WHOIS incredibly annoying.

Let’s take a look at a response. It’s a long one:

Whois Server Version 2.0

Domain names in the .com and .net domains can now be registered

with many different competing registrars. Go to http://www.internic.net

for detailed information.

Domain Name: DONKEYRENTALS.COM

Registrar: TUCOWS DOMAINS INC.

Sponsoring Registrar IANA ID: 69

Whois Server: whois.tucows.com

Referral URL: http://www.tucowsdomains.com

Name Server: NS1.HOVER.COM

Name Server: NS2.HOVER.COM

Status: clientTransferProhibited https://www.icann.org/epp#clientTransferProhibited

Status: clientUpdateProhibited https://www.icann.org/epp#clientUpdateProhibited

Updated Date: 20-jan-2016

Creation Date: 23-sep-2015

Expiration Date: 23-sep-2016

>>> Last update of whois database: Wed, 20 Jan 2016 18:09:25 GMT <<<

For more information on Whois status codes, please visit

https://www.icann.org/resources/pages/epp-status-codes-2014-06-16-en.

NOTICE: The expiration date displayed in this record is the date the

registrar's sponsorship of the domain name registration in the registry is

currently set to expire. This date does not necessarily reflect the expiration

date of the domain name registrant's agreement with the sponsoring

registrar. Users may consult the sponsoring registrar's Whois database to

view the registrar's reported date of expiration for this registration.

TERMS OF USE: You are not authorized to access or query our Whois

database through the use of electronic processes that are high-volume and

CHAPTER 4. TOOLS OF THE TRADE 39

automated except as reasonably necessary to register domain names or

modify existing registrations; the Data in VeriSign Global Registry

Services' ("VeriSign") Whois database is provided by VeriSign for

information purposes only, and to assist persons in obtaining information

about or related to a domain name registration record. VeriSign does not

guarantee its accuracy. By submitting a Whois query, you agree to abide

by the following terms of use: You agree that you may use this Data only

for lawful purposes and that under no circumstances will you use this Data

to: (1) allow, enable, or otherwise support the transmission of mass

unsolicited, commercial advertising or solicitations via e-mail, telephone,

or facsimile; or (2) enable high volume, automated, electronic processes

that apply to VeriSign (or its computer systems). The compilation,

repackaging, dissemination or other use of this Data is expressly

prohibited without the prior written consent of VeriSign. You agree not to

use electronic processes that are automated and high-volume to access or

query the Whois database except as reasonably necessary to register

domain names or modify existing registrations. VeriSign reserves the right

to restrict your access to the Whois database in its sole discretion to ensure

operational stability. VeriSign may restrict or terminate your access to the

Whois database for failure to abide by these terms of use. VeriSign

reserves the right to modify these terms at any time.

The Registry database contains ONLY .COM, .NET, .EDU domains and

Registrars.

Domain Name: DONKEYRENTALS.COM

Registry Domain ID: 1962822874_DOMAIN_COM-VRSN

Registrar WHOIS Server: whois.tucows.com

Registrar URL: http://tucowsdomains.com

Updated Date: 2015-09-23T18:00:04Z

Creation Date: 2015-09-23T18:00:04Z

Registrar Registration Expiration Date: 2016-09-23T18:00:04Z

Registrar: TUCOWS, INC.

Registrar IANA ID: 69

Registrar Abuse Contact Email: domainabuse@tucows.com

Registrar Abuse Contact Phone: +1.4165350123

Reseller: Hover

Domain Status: clientTransferProhibited

Domain Status: clientUpdateProhibited

CHAPTER 4. TOOLS OF THE TRADE 40

Registry Registrant ID:

Registrant Name: Contact Privacy Inc. Customer 0141386251

Registrant Organization: Contact Privacy Inc. Customer 0141386251

Registrant Street: 96 Mowat Ave

Registrant City: Toronto

Registrant State/Province: ON

Registrant Postal Code: M6K 3M1

Registrant Country: CA

Registrant Phone: +1.4165385457

Registrant Phone Ext:

Registrant Fax:

Registrant Fax Ext:

Registrant Email: donkeyrentals.com@contactprivacy.com

Registry Admin ID:

Admin Name: Contact Privacy Inc. Customer 0141386251

Admin Organization: Contact Privacy Inc. Customer 0141386251

Admin Street: 96 Mowat Ave

Admin City: Toronto

Admin State/Province: ON

Admin Postal Code: M6K 3M1

Admin Country: CA

Admin Phone: +1.4165385457

Admin Phone Ext:

Admin Fax:

Admin Fax Ext:

Admin Email: donkeyrentals.com@contactprivacy.com

Registry Tech ID:

Tech Name: Contact Privacy Inc. Customer 0141386251

Tech Organization: Contact Privacy Inc. Customer 0141386251

Tech Street: 96 Mowat Ave

Tech City: Toronto

Tech State/Province: ON

Tech Postal Code: M6K 3M1

Tech Country: CA

Tech Phone: +1.4165385457

Tech Phone Ext:

Tech Fax:

Tech Fax Ext:

CHAPTER 4. TOOLS OF THE TRADE 41

Tech Email: donkeyrentals.com@contactprivacy.com

Name Server: NS1.HOVER.COM

Name Server: NS2.HOVER.COM

DNSSEC: unsigned

URL of the ICANN WHOIS Data Problem Reporting System: http://wdprs.internic.net/

>>> Last update of WHOIS database: 2015-09-23T18:00:04Z <<<

Registration Service Provider:

Hover, help@hover.com

+1.8667316556

http://help.hover.com

This domain's privacy is protected by contactprivacy.com. To reach the domain contacts,

please go to http://www.contactprivacy.com and follow the instructions.

The Data in the Tucows Registrar WHOIS database is provided to you by Tucows

for information purposes only, and may be used to assist you in obtaining

information about or related to a domain name's registration record.

Tucows makes this information available "as is," and does not guarantee its

accuracy.

By submitting a WHOIS query, you agree that you will use this data only for

lawful purposes and that, under no circumstances will you use this data to:

a) allow, enable, or otherwise support the transmission by e-mail,

telephone, or facsimile of mass, unsolicited, commercial advertising or

solicitations to entities other than the data recipient's own existing

customers; or (b) enable high volume, automated, electronic processes that

send queries or data to the systems of any Registry Operator or

ICANN-Accredited registrar, except as reasonably necessary to register

domain names or modify existing registrations.

The compilation, repackaging, dissemination or other use of this Data is

expressly prohibited without the prior written consent of Tucows.

Tucows reserves the right to terminate your access to the Tucows WHOIS

database in its sole discretion, including without limitation, for excessive

CHAPTER 4. TOOLS OF THE TRADE 42

querying of the WHOIS database or for failure to otherwise abide by this

policy.

Tucows reserves the right to modify these terms at any time.

By submitting this query, you agree to abide by these terms.

NOTE: THE WHOIS DATABASE IS A CONTACT DATABASE ONLY. LACK OF A DOMAIN

RECORD DOES NOT SIGNIFY DOMAIN AVAILABILITY.

Hello. Welcome to, like, three pages later.

There’s a lot to this response, as we can see. Most of it is legal disclaimer because
WHOIS information has been the source of a lot of legal trouble over the years. The
act of publicly displaying a customer’s personal information has (surprise!) caused
a lot of problems.

There’s also some meta-information about the servers that were contacted to get
this information, and also some pseudo-advertisements. For the most part, you
can ignore these.

Toward the middle is the information we’re probably looking for: to whom the
domain is registered and when it expires. This can give us leads for who to contact
if there’s a problem or when the domain might go up for sale.

Different TLDs

Above is just one example of what a com domain will return but, as I said, each TLD
is different. Here’s a different response from a gov domain:

$ whois nasa.gov

% DOTGOV WHOIS Server ready

Domain Name: NASA.GOV

Status: ACTIVE

>>> Last update of whois database: 2016-01-20T19:12:13Z <<<

Please be advised that this whois server only contains information pertaining

CHAPTER 4. TOOLS OF THE TRADE 43

to the .GOV domain. For information for other domains please use the whois

server at RS.INTERNIC.NET.

Much shorter! This is because there’s no guide or specification that dictates what
WHOIS information needs to include or how it should be formatted. What a great
“standard” this is!

Different WHOIS Servers

Another aspect to consider: since all this information is stored on different servers
(all TLDs are run by different companies), occasionally we’ll need to specify which
server to use. For example, if we try to look up a dentist domain, we get:

$ whois donkey.dentist

whois: dentist.whois-servers.net: nodename nor servname provided, or not known

It can’t find the right server. Luckily the root zone database list all TLDs and their
WHOIS server info. Clicking on the dentist domain gives us a bunch of information
about the TLD and, at the bottom, a WHOIS server: whois.rightside.co. Now we
can make our WHOIS query using the -h option:

$ whois -h whois.rightside.co donkey.dentist

Domain not found.

...

Be right back. I need to go register a domain real quick.

Multiple Domains

This is a tricky one, but sometimes whois isn’t smart enough to figure out what you
mean. For example, if you try to get WHOIS information for a popular domain:

https://www.iana.org/domains/root/db

CHAPTER 4. TOOLS OF THE TRADE 44

$ whois google.com

Aborting search 50 records found

GOOGLE.COM.AFRICANBATS.ORG

GOOGLE.COM.ANGRYPIRATES.COM

GOOGLE.COM.AR

GOOGLE.COM.AU

GOOGLE.COM.BAISAD.COM

GOOGLE.COM.BEYONDWHOIS.COM

...

What is all this? Did we mistakenly type only a subdomain from africanbats.org?
Unlikely. It seems like WHOIS just isn’t that smart at figuring out what we mean.
So how do we get the information for just google.com?

Maybe you tried this out yourself and saw this piece of text in the gigantic domain
list:

“ To single out one record, look it up with “xxx”, where xxx is one of
the records displayed above. If the records are the same, look them
up with “=xxx” to receive a full display for each record.

But if we try that advice, one of two things happen. If we try surround it in quotes,
we get the same result. If we use the = “trick” it shows us WHOIS information for
all of the domains on that list:

$ whois "=google.com"

Aborting search 50 records found

Server Name: GOOGLE.COM.AFRICANBATS.ORG

Registrar: TUCOWS DOMAINS INC.

Whois Server: whois.tucows.com

Referral URL: http://www.tucowsdomains.com

Server Name: GOOGLE.COM.ANGRYPIRATES.COM

IP Address: 8.8.8.8

CHAPTER 4. TOOLS OF THE TRADE 45

Registrar: NAME.COM, INC.

Whois Server: whois.name.com

Referral URL: http://www.name.com

...

This does get us the information we want, but come on. Really, WHOIS!? We don’t
want to see any of that. Can’t we just get the single domain we asked for?

Turns out that if you prepend domain onto the front of the domain you want and
put it all in quotes, this works:

$ whois "domain google.com"

Whois Server Version 2.0

Domain names in the .com and .net domains can now be registered

with many different competing registrars. Go to http://www.internic.net

for detailed information.

Domain Name: GOOGLE.COM

Registrar: MARKMONITOR INC.

Sponsoring Registrar IANA ID: 292

Whois Server: whois.markmonitor.com

Referral URL: http://www.markmonitor.com

Name Server: NS1.GOOGLE.COM

Name Server: NS2.GOOGLE.COM

...

But fair warning here: this doesn’t work with all domains. (There’s no standard
for WHOIS, remember? It can be anything! What a great syst–. Uhg, I can’t finish
that sentence with a straight face.)

There are alternatives, such as jwhois, that a lot of people really like. There are
also web-based tools that help get around these issues. I recommend using one
of those instead.

https://www.gnu.org/software/jwhois/

CHAPTER 4. TOOLS OF THE TRADE 46

Honestly, the more I look into WHOIS, the less I am a fan of it. It can be useful
for checking to see if a domain is registered, but overall, it’s a mess. The Internet
Engineering Task Force (which wins the Best Company Name In This Book award)
and ICANN both recognize that WHOIS is flawed and are trying to replace it.

Hopefully, we’ll see this happen, but for now WHOIS is all we have.

host

host is kind of like a simplified version of dig. In fact, it’s developed by the same
company thatmakes dig and nslookup. This will be a quick section since there’s not
much to the host tool, but it’s a nice thing to have if you are looking for friendlier
responses. Here’s what I mean:

$ host donkeyrentals.com

donkeyrentals.com has address 104.131.191.2

Hard to be more friendly than that. That’s the A record for donkeyrentals.com in
simple English words. It can even interpret more complex responses:

$ host facebook.com

facebook.com has address 173.252.120.68

facebook.com has IPv6 address 2a03:2880:2130:cf24:face:b00c::25de

facebook.com mail is handled by 10 msgin.vvv.facebook.com.

Types

Of course, if we need to look up something other than A records, we can specify
type with the -t option:

$ host -t CNAME www.donkeyrentals.com

www.donkeyrentals.com is an alias for donkeyrentals.com.

https://tools.ietf.org/html/rfc3912#section-5
https://www.icann.org/en/system/files/files/initial-report-24jun13-en.pdf
https://www.isc.org
https://www.isc.org

CHAPTER 4. TOOLS OF THE TRADE 47

$ host -t NS donkeyrentals.com

donkeyrentals.com name server ns1.hover.com.

donkeyrentals.com name server ns2.hover.com.

Reverse Lookups

host can also do reverse IP lookups just like dig:

$ host -i 173.252.120.68

68.120.252.173.in-addr.arpa domain name pointer edge-star-mini-shv-12-frc3.facebook.com.

A Little More Info

Sometimes we do want a little more information than just a sentence. The -v

option is helpful here:

$ host -v donkeyrentals.com

Trying "donkeyrentals.com"

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 49015

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:

;donkeyrentals.com. IN A

;; ANSWER SECTION:

donkeyrentals.com. 900 IN A 104.131.191.2

Received 51 bytes from 192.168.128.1#53 in 37 ms

Trying "donkeyrentals.com"

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 65416

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:

CHAPTER 4. TOOLS OF THE TRADE 48

;donkeyrentals.com. IN AAAA

;; ANSWER SECTION:

donkeyrentals.com. 900 IN AAAA 2620:0:861:ed1a::1

Received 63 bytes from 192.168.128.1#53 in 35 ms

Trying "donkeyrentals.com"

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 44277

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 2

;; QUESTION SECTION:

;donkeyrentals.com. IN MX

;; ANSWER SECTION:

donkeyrentals.com. 900 IN MX 10 aspmx.l.google.com.

;; ADDITIONAL SECTION:

aspmx.l.google.com. 35 IN A 209.85.201.27

aspmx.l.google.com. 267 IN AAAA 2607:f8b0:400d:c04::1a

Received 110 bytes from 192.168.128.1#53 in 38 ms

Wait a second! This looks very familiar. In fact, it looks like they’re just using dig!
That makes some sense because, again, the same company developed both. In
this case, we could probably just stick with dig, but it’s good to know we have this
option if we want it.

Why I Chose dig Instead

So, I like host enough to include a section about it. It feels nice to use sometimes
when you want a quick answer, but I believe dig gives us more authentic informa-
tion. It shows us in the response itself that something is an A record, or a CNAME,
or NS, etc. This book is about learning those concepts, so it made the most sense
to use dig. It’s also the tool I see most used online in guides, tutorials, and Q&A
sites. I hope familiarity with dig will help you continue to learn on your own after
using this book.

CHAPTER 4. TOOLS OF THE TRADE 49

However, host does pop up from time to time, and it can be a really nice alterna-
tive for something quick, but only when you first understand what it’s telling you.
donkeyrentals.com has address 104.131.191.2may look nice, but it doesn’t give us
a lot of information to work with.

ping & ping6

ping (and its sibling for IPv6 addresses, ping6) is a very simple tool, so this will
be a short section. Its most common use case can be summed up as: “Are you
there?” Although simple, this utility is useful in automated environments. Com-
puters check to make sure other computers are awake, active, and receiving con-
nections.

Its command line interface looks like this:

$ ping donkeyrentals.com

PING donkeyrentals.com (104.131.191.2): 56 data bytes

64 bytes from 104.131.191.2: icmp_seq=0 ttl=55 time=15.031 ms

64 bytes from 104.131.191.2: icmp_seq=1 ttl=55 time=21.293 ms

64 bytes from 104.131.191.2: icmp_seq=2 ttl=55 time=12.122 ms

64 bytes from 104.131.191.2: icmp_seq=3 ttl=55 time=12.928 ms

64 bytes from 104.131.191.2: icmp_seq=4 ttl=55 time=12.733 ms

^C

--- donkeyrentals.com ping statistics ---

5 packets transmitted, 5 packets received, 0.0% packet loss

round-trip min/avg/max/stddev = 12.122/14.821/21.293/3.381 ms

For IPv6 addresses, ping6 is the tool to use:

$ ping6 2620:0:861:ed1a::1

...

It will run forever unless instructed to stop by typing the CTRL-C interrupt character.
To limit the number of times it runs, we use the -c flag to set a “count”:

CHAPTER 4. TOOLS OF THE TRADE 50

$ ping -c 5 donkeyrentals.com

...

We canmostly ignore the details of the response as they’re not particularly impor-
tant to us. If we run ping for an extendedperiod of time, the statistics at the bottom
have useful information. Included are percentage of packets lost and combined
times that each request took.

But mostly what we’re looking for is either a successful response:

64 bytes from 104.131.191.2: icmp_seq=0 ttl=55 time=15.031 ms

or a failure:

Request timeout for icmp_seq 0

We can ignore the successes, but failures require attention. Specifically, the site is
down and we need to work on bringing it back up. ping is great for these kinds of
monitoring tasks.

Common Scenarios

In this chapter, I hope to cover some of the more common problems that I see
people run into when trying to set up DNS and domains. There are a million dif-
ferent ways to configure websites and a million other different services that have
their own requirements. It would be impossible to write them all up in detail, but I
hope to give you the tools to find what you’re looking for and troubleshooting tips
for when it goes awry.

Feel free to skip to the sections you’re interested in. If everything seems to work
just fine, then skip the chapter altogether! Bewarned though, youwill miss a hand-
ful of mediocre jokes.

Creating a Subdomain

Hopefully, creating a subdomain is simple. If we have some kind of managed web
hosting, there is often a control panel just for this purpose. The basic idea here is
to create an A record that points to a server, exactly like our main website.

Subdomain for a Service

If this is for a service like an FTP server, we can point the ftp hostname to our
FTP server using an A record. Anyone connecting over the file transfer protocol
can use ftp.donkeyrentals.com. If we host our FTP server elsewhere, or we change
where it’s located, we can update that A record and the same domain will work.

51

CHAPTER 5. COMMON SCENARIOS 52

Subdomain for the Web

The process is not too different from a service. If our hosting provider does not
provide us with an easy way to make subdomains, we’ll have a little more config-
uration to do.

The DNS setup is the same: we create an A record pointing to the IP address of a
server. It’s common, but not at all mandatory, to use the same server as our main
website.

Once the request makes it to the server, our web server software–for this, we’ll
look at nginx and Apache–will take over and figure out what to do.

Let’s say we’re creating store.donkeyrentals.com. If we’re using nginx, our server
will need additional configuration to route requests to the store. Edit the nginx
configuration for our website. Mine is located at /etc/nginx/conf.d/default.conf.

Each domain is divided up into a server directive. The directive for the store will
look like this:

server {

server_name store.donkeyrentals.com;

root /var/www/donkey_store;

}

This short and sweet configuration can go above or below existing configurations.
The server_name looks for requests coming in for that domain, and root specifies
the directory to serve files from.

Apache is similar. Find our Apache configuration files (by default at /etc/httpd/conf/httpd.conf)
and add a new <VirtualHost> directive:

<VirtualHost>

ServerName store.donkeyrentals.com

DocumentRoot /var/www/donkey_store

</VirtualHost>

We’ll see striking similarities to the nginx configuration. ServerName will look for
requests for store.donkeyrentals.com, and DocumentRoot will route those requests
to files inside /var/www/donkey_store.

CHAPTER 5. COMMON SCENARIOS 53

After either configuration, we’ll need to restart nginx or Apache, respectively. Once
that’s done, our DNS can nowwork along side our web server. The A record points
to an IP address, and the web server software will direct it to the correct files.

Transferring a Domain

Some domain registrars out there are… shall we say, not the best. Maybe we cur-
rently have a domain at one of these places, and we’d like to switch. Or we’ve
purchased a domain from someone who uses a different domain registrar. What-
ever the case, it’s much easier to manage all our domains in one place.

To do that, we’ll need to transfer our domain from one registrar to another. While
every service is different, there are some standard steps that go along with every
domain transfer. For the sake of this guide, our domain is currently residing at
OldCrusty Domains. We’ll be transferring from OldCrusty to our new registrar:
ProbablyBetter Domains.

I’d recommend reading through this whole section before starting any transfer process.
It’s one of those topics that requires time and specific steps done in a specific order. The
more you know before you start, the better.

Unlocking the Domain

If our domain is locked at OldCrusty Domains, it cannot be transferred. In general,
this is a good thing. It prevents accidental transferring or deleting. How anyone
would ever accidentally transfer a domain is beyond me, but hey, more safety
never hurts.

However, to transfer the domain, we’ll have to unlock it. Some registrars require us
to call or email them to unlock a domain, but some are nice and give us a checkbox
or setting in the control panel.

Configure WHOIS Information

If WHOIS Privacy is turned on, we also won’t be able to transfer the domain. That’s
because an email will be sent to the Administrative contact listed in the domain’s
publicly available WHOIS information, and WHOIS Privacy blocks that email.

CHAPTER 5. COMMON SCENARIOS 54

We’ll also need to make sure the Administrative contact is an email that we can
check. In the next step, OldCrusty will send a code to that email address, and
we need that email. It’s also a good idea to check if the WHOIS information is
displaying correctly:

whois donkeyrentals.com

Domain Name: DONKEYRENTALS.COM

Admin Email: admin@donkeyrentals.com

...

Authorization Code

Now we need to request an authorization code from OldCrusty. Hopefully this is
just a button we can push somewhere (if not, we may need to email or call Old-
Crusty support). An email will be sent fromOldCrusty to the Administrative contact
email address from our WHOIS information. As I said in the last section, WHOIS
information needs to be publicly available (WHOIS Privacy turned off), and the Ad-
ministrative contact email needs to be an email address we can access.

The authorization code, also called EPP (Extensible Provisioning Protocol) code, is a
short code that we’ll need to enter at ProbablyBetter domains. It looks something
like 6sF>X95ZrH.

Start the Transfer

At ProbablyBetter Domains we can start transferring in a domain. Every registrar
is different at this point, but most likely, we’ll enter our domain, agree to some
terms of service, create or sign in to an account at ProbablyBetter domains, and
enter that authorization code from the email. We’ll also have to enter WHOIS in-
formation at ProbablyBetter Domains and enter payment information. This last
step may come as a surprise.

The reason most transfers cost money is ICANN (the people who run the whole
domain system) require the domain’s expiration date be pushed out one year. So
if the domain was going to expire on January 1, 1999, now it will expire January 1,
2000. For that reason, transferring often costs a similar amount to registering that
same domain for the first time.

https://en.wikipedia.org/wiki/Extensible_Provisioning_Protocol

CHAPTER 5. COMMON SCENARIOS 55

Minimize Downtime

Downtime is bad, and no one wants it, but it can be tricky to avoid when transfer-
ring a domain. Because of the way DNS works, servers often hold onto DNS data
over long periods of time, even if we change our records.

This is normally not a problem because your DNS records don’t change much. But
when we transfer a domain we’re essentially changing all the records. At any one
point in time, DNS servers have records that are anywhere from 1 second to 48
hours old.

One way to work with this constraint, outlined here, is to create identical records
at ProbablyBetter Domains and then transfer the domain over. That way if visitors
access the new DNS records or outdated ones, it won’t matter because they are
the same.

This does require you to be able to create DNS records without transferring the
domain first, which many registrars don’t support.

Another way is to reduce the time servers hold onto old information. This is called
the TTL value. It’s the number of seconds before DNS servers refresh their data.
The problem is, all servers that have your DNS data (potentially a lot) need to have
this value updated also.

This answer on ServerFault shows the following steps:

“ 1. Change the zone TTL to minimum - in most cases it’s 300 sec-
onds (5 minutes). Do not change any records at this stage.

2. Wait 48 hours.
3. [Transfer the domain]. It will take just 5 minutes to propagate

the changes.
4. Revert TTL to standard 48 hours.

This is pretty clever. Most of the time, you want your TTL to be a long period of
time so that if something does go wrong, it can’t happen immediately to everyone.
Also, this allows DNS servers not to have to be in near constant communication
with each other, as that would be much harder to scale to the world-wide system
that it is today.

http://dyn.com/blog/changing-managed-dns-providers-in-five-easy-steps
http://serverfault.com/questions/459968/how-to-switch-dns-for-a-website-without-service-disruption/459970#459970

CHAPTER 5. COMMON SCENARIOS 56

Clean Up

After we’ve set up the transfer at ProbablyBetter Domains, we may need to accept
that transfer back at OldCrusty Domains. Then, we wait. The process can take up
to twoweeks, so be prepared to wait that long. Inmy experience, it doesn’t usually
take that long, but we should give ourselves that much time just in case.

Also, know that our DNS records will not come over with the transfer. We’ll need
to re-add them manually if we haven’t already. For small sites, this isn’t too much
of an issue, but if we have lots and lots of records, this could take awhile. Some
sites let us set up the domain before we start the transfer. That can be a nice way
to test everything.

Be sure to lock the domain and turn on WHOIS privacy if we want it after transfer-
ring.

Connecting a Domain to an External Service

There are tons of web services today that help us set up a website if we’re not
web developers. Gone are the days when we have to write our own blog, store,
or company website, although some of us with masochistic tendencies tend to
anyway.

These services are great, but they often give us a relatively non-personal URL,
something like our-name.service.com. That works fine enough for testing, but run-
ning a serious business (such as renting donkeys) needs a professional and trust-
worthy domain name.

Sometimes, services will offer to sell us a domain up front. Obviously, domain
experts like us don’t need that kind of handholding. We want to be in control of
our domains! What if we decide to switch services? Or have subdomains that point
to other services? For me, this offering isn’t flexible enough.

Connecting a domain that we own usually involves two steps: adding DNS records
to point toward the service, then telling the service about the domain.

There are a few different ways to do the first step. The most common technique
I’ve seen is to point an A or CNAME record toward an IP or hostname owned by
the service. Sometimes, services force us to switch to their nameservers so they

CHAPTER 5. COMMON SCENARIOS 57

can manage our DNS records. If this is the case, hope that they have good DNS
controls if we ever want to set up other DNS records.

Next, we tell the service about our domain. Usually, in some control panel, we
enter our domain so the service knows what domains to look for. This may take a
bit to start working, but it’s often immediate.

Check the Work

If it’s not working, we can use dig to specify a nameserver. This returns 100% up-
to-date information and can confirm that we set the records correctly:

dig @ns1.example.com donkeyrentals.com

...

Make sure you’re querying the correct servers. If we’re using the service’s name-
servers, we need to query those servers instead of our DNS provider’s servers.
That’s where the updated records will be.

Also, be aware that if we want to use our bare, apex domain, we won’t be able
to use a CNAME record with the service unless our DNS provider supports
ANAME/ALIAS. records. Some services force us to use a CNAME, in which case
we’ll have to use a subdomain like www. We’ll explore solutions to this problem
later.

Remove www From a Domain

Back in the 1990s, a convention was started: use a hostname to specify what ser-
vice a domain represents. For example, an FTP server would put the ftp hostname
on the front of their domain to create ftp.example.com, whereas email servers
might use mail.example.com, and, of course, servers meant for the World Wide
Web would use www.example.com.

Many web masters used this convention. It helped the public understand that
www.joespizza.com on a takeout menu was a website, not a printing error.

CHAPTER 5. COMMON SCENARIOS 58

But we are now decades beyond the 1990s, and the public is incredibly used to
what a website is, yet the www remains widespread. There’s no real harm in it,
but we may want to get rid of it anyway. A more minimal URL can have a nicer
aesthetic. Or perhaps we only purchased a TLS certificate for a single domain.

Whatever the case, it’s possible to assure that visitors will be taken to the non-www
URL regardless of what they typed in. Themethod we choose is dependent on our
web server and whether or not we have access to its configuration files.

Note also that every method relies on a HTTP 301 redirect, which is the best way
to signal to browsers and search engines that we’d really rather they not use the
www.

nginx

If we use nginx and have access to its configuration files, removing the www
is relatively easy. Find and open our configuration file, by default located at
/etc/nginx/conf.d/default.conf.

There will already be a server directive for our main website. It should have these
lines:

server {

server_name donkeyrentals.com;

more configuration down this way...

}

This lets nginx know thatwhen a request comes in for donkeyrentals.com, do some-
thing with it, ideally, serve up thewebsite. Add this separate server directive above
it:

server {

server_name www.donkeyrentals.com;

return 301 $scheme://donkeyrentals.com$request_uri;

}

https://en.wikipedia.org/wiki/HTTP_301

CHAPTER 5. COMMON SCENARIOS 59

We’ll need to change donkeyrentals.com to our domain, of course.

This takes requests for www.donkeyrentals.com and, instead of serving up the web-
site as normal, redirects (using a standard HTTP 301 redirect) to the non-www
version of the site with the whole URL intact.

Apache

Apache’s method is quite similar to nginx’s: catch www URLs and redirect to
the non-www versions. Open up our Apache configuration (usually found at
/etc/httpd/conf/httpd.conf) and insert this directive at the top:

<VirtualHost *:80>

ServerName www.donkeyrentals.com

Redirect 301 / http://donkeyrentals.com/

</VirtualHost>

Then, replace donkeyrentals.com with our domain.

This, as we might expect, redirects www requests to the rest of the website using an
HTTP 301 redirect. Apache preserves whatever is after the trailing / when using
Redirect, so deep links will be maintained.

.htaccess

If we don’t have access to our web server’s configuration files, an .htaccess file can
also remove the www prefix. Note that this only works if we have an Apache server
running, which is very common, especially on shared hosting where we may not
have direct configuration access.

Create a file called .htaccess in the root of our website’s directory, i.e., on the same
level as our index.html file. If one already exists, we can use that instead. Edit the
file to have these lines:

RewriteEngine On

RewriteBase /

RewriteCond %{HTTP_HOST} !^donkeyrentals.com$ [NC]

RewriteRule ^(.*)$ http://donkeyrentals.com/$1 [L,R=301]

CHAPTER 5. COMMON SCENARIOS 60

As usual, replace donkeyrentals.com with our domain name.

This looks for any URL that does not begin (!ˆ) with donkeyrentals.com and redi-
rects (again, using the HTTP 301 redirect) to the non-www website. This will only
work for web requests, so other protocols like FTP will still work as planned. Other
subdomains usually store their content in a separate directory so they won’t be
affected.

Use a CNAME on the Apex Domain

Occasionally, we’ll need to use a CNAME record to redirect our domain elsewhere,
but we’ll want to use it on our apex domain, not www or another subdomain. The
CNAME is usually the requirement, and the lack of a www is a stylistic choice. Some
services (I’m looking at you Heroku) require that we use a CNAME record to point
our domain toward their service.

We all know by this point that CNAMEs can’t be used on the apex domain, so we’re
stuck using a subdomain. The common choice is certainly www, but, as previously
established, maybe that’s not what we want.

ALIAS/ANAME

If our DNS provider offers ALIAS or ANAME records, that’s probably our best op-
tion. I’m not a huge fan of these because they are non-standard records, but some-
times they’re our only choice.

On the upside, they are simple to configure:

• Hostname: @
• Record Type: ALIAS
• Target Host: someotherwebsite.com

And boom, donkeyrentals.com now points to another place.

https://devcenter.heroku.com/articles/custom-domains#definitions

CHAPTER 5. COMMON SCENARIOS 61

Forwarding

Unfortunately, sometimes we don’t have these special records and we have to
use a subdomain like www. In this case, I prefer using forwarding to force all apex
domains to redirect to their www counterparts. We still end up with www at the start
of our domain, but people can visit either URL and get forwarded to the correct
place.

In the last section, I went over detailed instructions on removing the www from a
domain. We can use those instructions to go the other way and force the www. The
two basic ways to do this are:

• Configure nginx or Apache to forward the domain.
• Use an .htaccess file to forward the domain.

Some DNS providers have tools to forward a domain, which works similarly to
the methods above. In this case, we’re forwarding it toward the www version. For
example, if we have donkeyrentals.com as our domain, we can forward that to
http://www.donkeyrentals.com. Then, our CNAME record for www can point wher-
ever we need.

The Website Is Only a Blank or Placeholder Page

Getting a new domain is fun and all, but it can take some time to set up. A common
problem is the website will show up as either nothing or some placeholder page.

Let’s say we get a domain from Donkey Domains. With no setup whatsoever, do-
mains often point to a placeholder page with a “website coming soon” message.
There are two possible problems.

Default A Records

First, the A records for the domain haven’t been configured yet and are pointing to
their default IP addresses. This is an easy fix: point them toward our server. If we
don’t see the change, we can test our configuration with dig. We’ll need a name-
server of the DNS provider. For this example, we’ll use ns1.donkeydomains.com:

CHAPTER 5. COMMON SCENARIOS 62

$ dig @ns1.donkeydomains.com donkeyrentals.com +short

12.34.56.78

Compare the IP address that comes back with the IP address of our server. If
they’re the same, it’s likely we need to wait for the DNS to propagate throughout
the internet.

Wrong Nameservers

If not, the second thing that could be wrong is our nameservers are set incorrectly.
When our computer is looking up (resolving) the domain, the domain resolver will
be pointed toward the wrong nameservers, then look in those servers for DNS
records. If we remember from theNS Records section, this is like being in thewrong
phonebook. If someone looks for us in a different city’s phonebook, theywon’t find
our number.

Somewebhosts require us to use their nameservers instead of ourDNSprovider’s.
This is commonwhen a domain comeswith ourwebhosting. I like keepingmyDNS
records at the DNS provider because it feels nice to have them separated. Also, I
suspect that most DNS providers do a better job at, well, managing DNS records
than most web hosts. If DNS hosting is your core business, you’re more likely to
make sure it works well.

But sometimes we have no other choice but to host our DNS records at our web
host. To do this, we’ll need our web host’s nameservers. They often look like
ns1.somedomain.com or ns2.somedomain.com, or something similar, then it’s generally
as simple as finding the nameserver settings for our domain at the DNS provider.
Commonly, these settings are not with our DNS records, but in some other, more
general configuration spot.

Warning: When you change your nameservers, all of the DNS records at that
nameserver become invalid. That’s because any domain resolver will be looking
for records on a different server now, so any old records at that old server will no
longer work. You’ll have to enter them all again at your web host.

CHAPTER 5. COMMON SCENARIOS 63

My Old Website Is Showing Up

Let’s say we’ve recently moved to to a different web host, or, for whatever reason,
need to point our domain to a different server. This can be tricky because there’s
not a great way to test our records before we move. The best way I’ve found is to
have a spare domain lying around that we can configure without fear of screwing
anything up.

But that isn’t always the case. So what can we do if it’s not working?

Check the Nameservers

One very common problem is a domain’s nameservers are set incorrectly. Re-
member, the nameservers are like the phonebook and all our other DNS records
are like the people listed inside it. If someone is looking in the wrong “phonebook,”
they won’t be able to find the right DNS records.

Some web hosts will manage a domain’s individual DNS records, and the DNS
provider is only responsible for administrative tasks like domain renewal and
whois information. In a situation like this, we use the DNS provider to point our
domain’s NS records toward our web host, and the web host handles all other
records.

Let’s say we used Donkey Domains for our domain name and Horse Hosting to
host our website. Over at Donkey Domains, we would set our NS records to the
nameservers provided by Horse Hosting:

• Nameserver 1: ns1.horsehosting.com
• Nameserver 2: ns2.horsehosting.com
• Nameserver 3: ns3.horsehosting.com

Then, all other records (A, MX, CNAME, etc.) will be created through Horse Host-
ing’s control panel.

Check the Records With dig

If we think we’ve set everything up correctly but our website is still not showing
the correct data, we can check the records directly using dig.

CHAPTER 5. COMMON SCENARIOS 64

First, we can check to make sure nameservers are what we expect them to be:

$ dig +short donkeyrentals.com NS

ns2.horse-hosting.com.

ns1.horse-hosting.com.

ns3.horse-hosting.com.

Then we can check individual records:

dig +short donkeyrentals.com A

104.131.191.2

We can also check the nameserver directly for any record:

$ dig +short @ns1.horse-hosting.com donkeyrentals.com A

104.131.191.2

If these match but we’re not seeing the website in our browser, it’s possible that
DNS resolvers around the world haven’t updated to the latest set of data yet. This
is why we see warnings like “changes may take up to 48 hours.”

However, if they don’t match, that means we may have set the individual DNS
records in the wrong place. Looking at the queries above, there are two types:
one uses our DNS resolver, while the other queries the nameserver directly.

If the query using the nameserver is correct but the query using the resolver isn’t,
it’s still possible that a resolver somewhere along the line is using old, cached in-
formation. This should sort itself out within hours or, at most, a couple of days.

However, if the direct nameserver query has the incorrect records, it’s likely that
the nameserver is still pointing toward the old domain host. Make sure the do-
main’s NS records point toward the new server.

CHAPTER 5. COMMON SCENARIOS 65

Redirect One Domain to Another

Sometimes we move on from a domain. Perhaps a company is rebranding, or we
sold the domain for a tidy profit. Or maybe we’ve grown apart from the domain.
The domain doesn’t “get” us anymore and we’ve found a new, fresher, more hap-
penin’ domain.

Whatever the case, we want to make sure previous visitors to our domain can get
to us at the new one, even if they visit the old one. Let’s look at a few options on
how to do this.

Our DNS Provider Might Do This for Us

If we’re no longer using any part of the domain (e.g., no subdomains, email ac-
counts, etc.), sometimes our domain host can redirect the entire domain for us.
This is often called forwarding or redirecting the domain. We can check in the
DNS provider’s control panel for an option to forward or redirect.

If we have the option, the best thing to use is a 301 or permanent redirect. This
will tell search engines and browsers alike to use the new domain instead of the
old one. This technical detail may not be apparent in our control panel, but if we
see it, we’ll know we’re doing it right.

If We Have Access to the Server

If we’re using some part of our domain, but still want to redirect traffic, we can
configure the web server to use a 301 redirect.

For an nginx server, we’ll need to find the configuration file, by default located at
/etc/nginx/conf.d/default.conf. Find the server directive for our website that has
our old domain listed next to server_name, then change it to look like this:

server {

server_name donkeyrentals.com;

return 301 https://newdomain.com;

}

https://en.wikipedia.org/wiki/HTTP_301

CHAPTER 5. COMMON SCENARIOS 66

ForApache, find its configuration file, by default located at /etc/httpd/conf/httpd.conf.
Find the <VirtualHost> directive that has our site listed next to ServerName. Add a
Redirect line to it:

<VirtualHost *:80>

ServerName donkeyrentals.com

Redirect 301 / https://newdomain.com

</VirtualHost>

We can see these both use 301 redirects.

If we don’t have access to the direct Apache configuration files, but we do have
access to the files on our server, we can use an .htaccess file to redirect. Place or
edit an .htaccess file in the same directory where our index.html page is. We may
have to show invisible files if it doesn’t show up.

Add this to the file:

Redirect 301 / https://newdomain.com

This looks very similar to our Apache configuration, and it does pretty much the
same thing.

If We Don’t Have Access to the Server

If the domain is the only thing we have access to, then the above is not an option.
As long as we can create new DNS records, we can use a CNAME.

This is a book about DNS, so it might seem odd that I put the DNS solution last.
That’s because there’s one big caveat: CNAMEs cannot exist on the apex domain.
You might remember this from the Types of DNS Records chapter.

If we were using www or some other subdomain as our main URL, this will work
great. Make a new CNAME record that looks like this:

• Hostname: www
• Record Type: CNAME

CHAPTER 5. COMMON SCENARIOS 67

• Target Host: newdomain.com

Unfortunately, if our domain has noprefix, the only other option is anANAME/Alias
record, which our DNS host may or may not support.

Check Our Work

Obviously, we can visit the old website and see if the new one shows up instead.
If we want to inspect further, we can use a command called curl. Open up a shell
and type the following using the old domain:

$ curl -I donkeyrentals.com

HTTP/1.1 301 Moved Permanently

Location: httpw://newdomain.com

Date: Mon, 11 Apr 2016 17:51:57 GMT

Server: lighttpd/1.4.28

The curl command makes a request to whatever domain we tell it, like typing a
URL into a web browser would do. The -I flag says that we want to see the HTTP
headers that come back as a result of the request. In this case, we can see we got
the 301 Moved Permanently status code, which is exactly what we want. Go us!

Securing Your Website

TLS and SSL

You’ve probably seen that lock next to the URL in your web browser on certain
websites. It means you’re visiting a website that has proven its identity and es-
tablished a secure connection with your computer. When that lock is present, the
data to and from that site is encrypted. No one but you and the website are seeing
the data being passing back and forth; this includes data such as passwords, credit
card numbers, Social Security numbers, or health information.

If your data is not secure, it can be seen and stolen by malicious hackers. When I
talk about data being “secure,” I’m talking about two different concepts working to-
gether. First, and what you might be thinking, is encryption. Software can take any
data and scramble it up so it is unreadable. That same software (with appropriate
permissions, of course) can descramble that information. Second, and arguably
more important, is identity or authenticity. The ability to de-scramble information
should only be given to people we trust, and they can only be trusted if we know
who they are. This is what makes the authenticity part of security so important.

TLS (Transport Layer Security), also referred to as SSL (Secure Sockets Layer),
makes this encryption and authenticity possible. When it’s set up for a website, it
shows up as a lock or green badge next to a website’s URL and signals to visitors
that the website is safe. If visitors enter their private data into the secure website,
snoopers won’t be able to see it even as it’s being transferred right in front of
their eyes.

The real magic of TLS is that the entire process of proving authenticity and setting
up encryption happens out in the open. Even as these digital criminals watch all

68

CHAPTER 6. SECURING YOUR WEBSITE 69

of the data going back and forth, it’s still secure. I say “magic,” but it’s not. It’s
computer security, and we’re going to look at how it works later on in this chapter.

Websites and servers aren’t configured to use TLS by default. To do so there are
some hurdles to jump through, namely proof andmoney. Getting that lock next to
the URL requires paying for a certificate and verification that we own the domain
that we’re certifying. Don’t let the word “money” intimidate you, though, since free
alternatives are starting to pop up.

These roadblocks exist because, as we talked about above, security entails some
kind of identity or authenticity. For example, you trust the teller at your bank be-
cause you trust the bank owners, and they trust their employees. But if the teller
came up to you on the street and said, “HEY, I CAN STORE YOUR MONEY!”, you’d
probably pretend not to hear them and walk away quickly.

That’s the importance of authenticity, but what about encryption? How could data
go right in front of hackers without them seeing it? Well, exactly how someone
could hack isn’t a topic for this book, but we can look at a simplified example of
what they would see.

It happens to all of us: You’re out in a public place like a coffee shop, and you
just have to buy that artisanal, small-batch donkey saddle for your niece’s birthday
party. Someone in a trench coat and sunglasses with a laptop is sitting nearby
watching all the Wi-Fi data go back and forth. They might see something like*:

...

User visited donkeyrentals.com

User visited checkout page

User submitted an order with this data:

Name: Edward A Loveall

Credit Card Number: 1234-5678-9012-3456

Expiration Date: 12/99

CVV: 123

...

*This was only a reenactment. No real data was stolen in the making of this example.

Hackers can see this data flying by and record it. Now they have your credit card
number with verification code and everything. No good! In contrast, if you have a
secure connection established with TLS, the hacker would see something like this
instead:

CHAPTER 6. SECURING YOUR WEBSITE 70

...

DeXZPuvv5btpckqk1feXpmUmLBuCMOrIboeg3WHs1rV8eydrTYVgDDq91u02O9HNijDNo+U

Y01IprNqHu6RAE+Z2vBq7jXgKAOqiHsq71yOnfZKiXJThi5u24kRnh1Rm9zht5lNzQ87yI9

KGPf8p16gplQ1SfTa85LLZWkglZGhfnHkVWNdgPf5rpQIWby24YhTPswG4ZSXw4S/pJKhms

6trB2gSCxJi4zJUPSCmB24V3HpdIL1ZPEIRwAz4EpYir/BEefVenOT8pW6afkyp6wKxInNz

pB/16OE0qzjYYzNXymdIAmlzoglLEMIX1bMpZPTPfs2gLJdCr1oQCJ5z1gfXPL2veyK1PaO

...

This is ever-so-slightly less readable. Most nefarious hackers would see this and
move on to someone else, but even if they decided to grab this snippet, it would
be nearly impossible to decode, and it’s not even guaranteed to be useful. It might
just be someone merely browsing donkey saddles.

Most of this chapter is about obtaining one of these certificates. In addition, there
are some other related topics we’ll cover:

• What certificates are and their different types
• Certificate authorities and how they relate to certificates
• Information we’ll need to correctly set up a certificate
• Generating a private key and certificate signing request
• Obtaining a certificate from a certificate authority
• Installing our certificates with nginx or Apache

Let’s get started!

Fair warning: This is a dense chapter that you may have to read more than once.
Make sure you’ve had a full night’s sleep andwaited 30minutes after eating. We’re
about to go into the deep end.

Certificates

You can think of certificates like your driver’s license: all your identifying infor-
mation bundled up into a document. It has everything that proves that you are

CHAPTER 6. SECURING YOUR WEBSITE 71

authentically… well, you. When you want to drive or drink legally (not at the same
time!), you are asked for your information. But if you only claimed, “Hey, I’m 21
years old and a citizen of this country”, that wouldn’t convince anyone. You need
that license.

To get a license, you need to go to a government building for issuing licenses
and fill out some forms. Now you have something that A) identifies you and B)
is trusted by others. The government trusts the people in this building and the
building trusts you. This is called a chain of trust. This also allows the wider world
(or at least country) to trust you when you show them your license.

In this analogy, your license is your certificate. It’s stamped by the government
(which represents the certificate being created) because you filled out the right
paperwork for a license (i.e., a certificate signing request).

Certificate Authorities

Also abbreviated CA, this is where we’ll buy our TLS (also called SSL) certificate
from. All CAs have a public certificate which can be used to verify that pieces of
information have come from them. In fact, visitors to our site or service will use
them to verify our certificate. More on that later.

Some CAs are called “root certificate authorities,” so we call their certificates
“root certificates”. All operating systems these days come with a bunch of
these root certificates, which start the chain of trust I mentioned earlier.
To see a list of root CAs installed on your computer, search the web for
<operating system> trusted root certificates and insert your operating system.
You’ll find a long list of certificates that all have very enterpise-y sounding names
like UltraCorp Secure or DonkeyCom Gold.

Public-key Infrastructure

This whole network of certificates, certificate authorities, and the chain of trust
uses a system called public-key infrastructure or PKI.

It starts with a public/private key pair, which are two files (public key and private
key) that are “cryptographicallymatched.” Thismeans that a public key can encrypt
data that only the private key can decrypt. Also, because they arematched, if either

CHAPTER 6. SECURING YOUR WEBSITE 72

key is tampered with even just a tiny bit, they become completely unmatched and
will be unable to encrypt/decrypt for each other. We will be making a key pair for
our server. All CAs already have one.

Public keys, as their name suggests, are public. In fact, whatever CA we choose
will have a public key that anyone can see. All CAs do this, and we will too. Private
keys, on the other hand, are the exact opposite. They need to be kept 100% secret
and secure. I’ll be harping on this for the rest of the chapter: private keys stay
private!

When we want a certificate from a CA, we generate a key pair. We send them the
public key along with some other information about us and our domain name.
They bundle that up and send it back as a certificate. It contains our public key, a
signature from the CA, and meta-information such as what CA it came from, how
it was created, and more.

That signature is a new piece of this puzzle. The CA creates one by first taking our
public key and turning it into a digest. A digest is made by transforming (or hash-
ing) some input into some output of a standard length. Think of it as a fingerprint
of our public key: a much smaller, identifying version of us that is the same ev-
ery time. Second, the CA makes the signature by combining this digest along with
their private key.

By the way, this private key from the CA is just like the private key we will create.
It’s kept secret just like you should keep yours secret and has an associated public
key. The CA’s public key is the same public key that is stored on all major operating
systems.

This all comes together when someone visits our secure website (or server) and
the browser (or client) downloads the certificate we’ve set up. That certificate con-
tains our public key, the signature, and some other meta-information, such as
who created it and what information the certificate is certifying. In our case, we’re
certifying our domain name.

The browser then takes our public key from inside the certificate and creates a
digest, just like the CA did. Next, it looks to see which certificate authority issued
the certificate and grabs that public key from the operating system.

It then uses the CA’s public key, the digest, and the signature from the certificate
to verify that the public key is A) ours and B) hasn’t been tampered with: certifi-
cate authority’s public key + digest + signature = verification. If the verification

https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Cryptographic_hash_function

CHAPTER 6. SECURING YOUR WEBSITE 73

comes back as okay, it proves that we are who we say we are, and we can now be
trusted by the browser!

After that, the server and the browser set up a secure connection (we’ll talk about
this connection a little later), and all data from there on out is encrypted. Phew!

Different Levels of Validation

There are three different levels of validation. These levels are representations
of how much you have proven to a certificate authority. The first is a simple
domain validated (or DV) certificate. This is by far the simplest and only requires
that you prove you have control over a domain. Proof can be obtained when
the CA sends an email to an address listed in the domain’s WHOIS information
or sends an email to a common email address like admin@yourdomain.com or
webmaster@yourdomain.com.

If we don’t have email set up for that domain or WHOIS privacy is turned on, there
will be no email addresses to send to. In that case, there are usually other ways to
validate the domain. For example:

• Put a text file with a very specific name on our web server for that domain.
The CA will then check for this text file.

• Create a DNS record like a CNAME or TXT record that the CA can check for.

Both of these low-hassle methods prove that we own the domain.

More complicated but more trustworthy for visitors than a DV certificate is an or-
ganization validated (or OV) certificate. This requires legal proof that your orga-
nization exists, such as:

• The business’s address in an official government database or other third-
party database

• Articles of incorporation, business license, company bank statement, and
other similar documents

• The driver’s license or passport of the applicant
• A recent major utility bill

CHAPTER 6. SECURING YOUR WEBSITE 74

This can vary between certificate authorities but, as you can tell, it’s much more
involved. Interestingly, these certificates are actually somewhat hard to find. You
most often find DV’s or their more robust sibling:

Extended validated (EV) certificates are the most rigorous of all, requiring many
levels of proof. For example, Comodo requires the proof of:

• Legal existence and identity
• Trade/Assumed Name as applicable
• Operational existence
• Physical address and organization phone number
• The name, title, authority, and signature of the person(s) involved in re-
questing the certificate and agreeing to the terms and conditions

While this kind of certificate is the most effort, it is rewarded with a special badge
in the URL bar. Go to a site like GitHub and see the green badge next to the URL.
That is an extended validated certificate in action. Compare that with a site like
Wikipedia, which only has a domain validated certificate. Most browsers will let
you click on that lock or badge and see the certificate details and the chain of trust.
That chain leads all the way back up to the root certificate, which we mentioned
above.

The advantages of OV or EV certificates over a DV are unclear. There’s certainly no
harm in having more verification, other than the extra time, effort, and money it
takes to set up. You can expect to pay about 5-10x more money for an EV, and it
can take several weeks to be verified. There’s no extra encryption that comes with
them either. From a passing-around-data perspective, they are all equally secure.

One rationale for OV or EV certificates is this: “Customers will trust a website with
a larger, greener, more official-looking badge.” In this writer’s opinion, most cus-
tomers don’t even notice. Those that do notice are not likely to look into the legit-
imacy of the certificate that much. My advice is start with a DV. It will get you up
and running with a secure website faster, which is a legitimate benefit. If you need
to upgrade to an OV or EV later, the option’s always open.

Wildcard

One restriction to a plain DV certificate, however, is we can only encrypt a single
domain. We pick something like donkeyrentals.com and that’s it. If we need to

https://support.comodo.com/index.php?/Default/Knowledgebase/Article/View/253/0/what-is-required-for-validation
https://github.com
https://en.wikipedia.org

CHAPTER 6. SECURING YOUR WEBSITE 75

Figure 6.1: TLS certificate badges in the Safari and Chrome browsers

CHAPTER 6. SECURING YOUR WEBSITE 76

secure subdomains, we can get a wildcard certificate.

This lets us secure *.donkeyrentals.com. That is, any domain attached to
donkeyrentals.com such as blog.donkeyrentals.com or shop.donkeyrentals.com can
nowbe secure too. Note, however, thatwe can’t secure secret.blog.donkeyrentals.com.
Only one level of subdomains is permitted. Wildcard certificates usually cost
about 2-4x more than a regular DV, but if multiple subdomains enter the picture,
it can often pay for itself.

Be Prepared

So what do we need before we setup a TLS certificate on our website?

A Certificate Authority

We talked about this in the previous section, but this is who you will buy your
certificate from. There are many certificate authorities to choose from; searching
for buy SSL certificate will find plenty. Some to check out are:

• Comodo
• DigiCert
• RapidSSL (one of the least expensive paid CAs I’ve found)

And one that offers free DV certs:

• Let’s Encrypt

One thing you’ll notice when shopping around is paid certificates are often
much more expensive than domain names. For example, the certificate for
donkeyrentals.com cost $230.85 for three years, or $76.95 per year. The domain
cost $13.17 for one year. Security can be expensive.

That said, there are free alternatives like Let’s Encrypt if you only need a DV cer-
tificate. “How is Let’s Encrypt free?” I hear you asking. Well, they are funded by a

http://stackoverflow.com/questions/2115611/wildcard-ssl-on-sub-subdomain/9743652#9743652
https://ssl.comodo.com/comodo-ssl-certificate.php
https://www.digicert.com/welcome/ssl-plus.htm
https://www.rapidssl.com
https://letsencrypt.org
https://letsencrypt.org/sponsors/

CHAPTER 6. SECURING YOUR WEBSITE 77

bunch of tech companies to promote the adoption of digital certificates. Let’s En-
crypt overall looks really great and I’ve heard many system administrators praise
it. Check it out if you’re looking for a free option.

For this chapter we’re going to be looking at more traditional certificates that are
purchased and installed manually.

OpenSSL

OpenSSL is software that implements these TLS standards we’ve been talking
about. OpenSSL has a ton of functionality, and we’re going to use it to generate
our server keys, create our certificate signing request (CSR), and debug our
certificate.

Make sure the openssl tool is installed before continuing. It’s often (but not al-
ways) installed on Unix/Linux systems. You’ll probably have to install or update
it on Windows and Mac OS X. Open up a terminal or command line and type
openssl version. If you get something like OpenSSL 1.0.2g 1 Mar 2016, you’re all
set. If not, you’ll need to install it. If you have an old version, I’d recommend up-
dating it.

Also, I’ll note here that OpenSSL has been the cause of some security bugs in the
last couple of years. Since it is a very popular implementation of TLS standards,
any bug found is able to be exploited across a large number of websites. You
may have heard of heartbleed, a bug that allow hackers to access server data,
including the server’s private key. Like any piece of software, this is one of many
bugs that happen in the course of development. Unlike any piece of software, bugs
in OpenSSL are more extreme because they can jeopardize server and customer
security.

Because of these bugs, other companies have started to make their own imple-
mentations:

• Mozilla has created NSS.
• Amazon is taking a stab at modernizing OpenSSL with s2n.
• OpenBSD created LibreSSL.
• Google created a version called BoringSSL, but they don’t recommended it
for public use.

https://letsencrypt.org/sponsors/
https://letsencrypt.org/sponsors/
https://www.openssl.org
http://heartbleed.com
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://blogs.aws.amazon.com/security/post/TxCKZM94ST1S6Y/Introducing-s2n-a-New-Open-Source-TLS-Implementation
https://github.com/awslabs/s2n
http://www.libressl.org
https://www.imperialviolet.org/2015/10/17/boringssl.html
https://boringssl.googlesource.com/boringssl/

CHAPTER 6. SECURING YOUR WEBSITE 78

If you’d rather use these, then great! However, for the rest of this book I’m go-
ing to be using OpenSSL commands. Make sure you translate any commands as
necessary if you’re going to follow along with a different tool.

A Common Name

This is the full domain that we’ll be securing. I say “full” because, for a certificate,
just as in DNS, www.donkeyrentals.com and donkeyrentals.com are different. If
you’re purchasing a wildcard certificate, this will probably be the equivalent of
*.donkeyrentals.com to cover all first level subdomains. For a single DV cer-
tificate, you’ll have to pick your apex domain or a subdomain. This could be
www.donkeyrentals.com, or secure.donkeyrentals.com, or donkeyrentals.com, etc.
You can’t change this without getting another certificate, so choose wisely.

A Web Server

This might seem obvious, but the web server that you use matters quite a bit. If
you’re setting a web server up manually, it’s likely that you’re using Apache, nginx,
or IIS. Anyweb server worth using supports TLS certificates. You’ll also need access
to the configuration files of these web servers.

If you’re using shared hosting (Dreamhost, Bluehost, etc.) or a service (Tumblr,
Squarespace, Shopify, etc.) to host your website, check with that service to make
sure they support TLS/SSL and allow you to configure enough of your web server
to set up a certificate. Some do, some don’t. Some have restrictions on the kinds
of certificates you can use or how you use them. Some only let you configure a
small part of your web server. I can’t give any more advice here than to contact
the service or do some very extensive research to find out what the restrictions
might be.

Getting a Certificate

Let’s walk through creating a private key and certificate signing request (CSR) step
by step. We’ll upload the CSR to our Certificate Authority (CA) and they will create
and sign our certificate. After, we’ll cover installing that certificate in a couple of
places. By the end of the chapter, we should have ourselves a secure website.

CHAPTER 6. SECURING YOUR WEBSITE 79

Create a Working Directory

We’re going to be creating a few files, so it’s nice to have them contained in a single
folder. This folder should eventually be secured, because it will contain private key
information that should never be made public. Create a directory with a name like
donkeyrentals-certs or something equally descriptive. Navigate to that directory
inside of your shell.

Create the Private Key and CSR

Next, we’re going to create our private key and CSR. We’ll need to enter a bunch
of contact information for this. It can be a little overwhelming, so let’s do one
together. If you messed up, starting over is as easy as deleting the two files it
creates and running the command again. I’ll run through Donkey Rentals, and you
can follow along with your domain:

$ openssl req -nodes -newkey rsa:2048 -keyout donkeyrentals_com.key \

-out donkeyrentals_com.csr

Generating a 2048 bit RSA private key

.......................................+++

..+++

writing new private key to 'donkeyrentals_com.key'

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US

State or Province Name (full name) [Some-State]:Massachusetts

Locality Name (eg, city) []:Cambridge

Organization Name (eg, company) [Internet Widgits Pty Ltd]:Donkey Rentals

Organizational Unit Name (eg, section) []:.

Common Name (e.g. server FQDN or YOUR name) []:donkeyrentals.com

CHAPTER 6. SECURING YOUR WEBSITE 80

Email Address []:.

Please enter the following 'extra' attributes

to be sent with your certificate request

A challenge password []:crouching-domains-hidden-donkeys

An optional company name []:Donkey Rentals

We’ll go over all those fields in a second. First, we can look at the two files created
by the command:

• donkeyrentals_com.key

The private key. Again, this is the thing we need to keep absolutely secret.

• donkeyrentals_com.csr

The certificate signing request. We will be uploading this to our CA. Think of it
as the digital paperwork you have to fill out and submit to get your certificate. It
contains the public key and the contact information we filled out above.

These names aren’t hardcoded; we entered them in the command above. While
it doesn’t matter what we name the files, it’s a good idea to name them in a way
that will give us a hint as to what they will be in the future. A convention is nam-
ing them similar to the common name, e.g., the donkeyrentals.com CSR is named
donkeyrentals_com.csr.

Let’s briefly go over the fields we filled out when creating the key and CSR. Most
of these fields should be self-explanatory, but if you’re easily intimidated like I am,
this should help. To leave a field blank, use a single period (.) character.

• Country Name – The two-letter country abbreviation for the certificate’s
owner.

• State or Province Name – Use the full name here. If you are in a country
that doesn’t have these divisions, use the full country name instead.

• Locality Name – The City, Township, Hamlet, Ant Colony, etc.
• Organization Name – The company representing the certificate.
• Organizational Unit Name – You can leave this blank (with a period).

CHAPTER 6. SECURING YOUR WEBSITE 81

• Common Name – We talked about this back in the Be Prepared sec-
tion. This is the exact domain we want to encrypt. donkeyrentals.com vs
www.donkeyrentals.com is crucial here.

• Email Address – This one can stay blank, too (again, with a period).
• A challenge password – Make this a very strong password, unlike the one
I used in the example.

• An optional company name – This can be the same as Organization
Name.

And that’s it for CSR.

Upload the CSR

The next thing to do is provide the CSR to our CA. It’s a text file that looks like a
bunch of gibberish with a header and footer. It contains your public key and all the
information we just typed in. Your CA will know how to read it. In some cases, we
need to upload the .csr file, but in others we resort to copy-and-paste like animals.
Your CA will tell you what they want you to do.

Either way, once we get our CA to sign our certificate, they’ll send it to us, probably
in an email, ormake it available on their website. It alsomay comewith a ca-bundle
file that we will use with the certificate. This usually happens within minutes for a
single domain certificate. Once we have the certificate, let’s save it to our working
directory as donkeyrentals_com.crt or your equivalent file name.

Now it’s time to install it. If you don’t manage your own web server, you’ll have
to rely on your web hosting provider to provide instructions. If you use nginx or
Apache on a server, let’s dive in.

Installing a Certificate for nginx

What We Need

First, we’ll need to be able to access our server. This is usually done through SSH,
which I will assume you have set up already. Also, make sure that we have the
certificate files we got from our CA:

CHAPTER 6. SECURING YOUR WEBSITE 82

• donkeyrentals_com.crt

• donkeyrentals_com.ca-bundle

• donkeyrentals_com.key

Finally, we’ll need to install nginx and openssl. To find out if nginx is already in-
stalled, we connect to the server and type:

nginx -v

nginx version: nginx/1.6.3

To see if openssl is installed:

$ openssl version

OpenSSL 1.0.2g 1 Mar 2016

If we get something back that says command not found, then the package is not in-
stalled. If that’s the case, our packagemanager (yum, brew, apt, choco, etc.) should
be able to install them for us.

Combine the Certificates

nginx needs the certificates combined into one file. The order of the files should
be:

Our certificate

Intermediate certificates

Root certificate

Our certificate authority should give you instructions on how to do this and the
exact order they want the certificates in. They will (or should) also provide us with
any certificates we don’t have. We’re essentially creating a file that starts with our
certificate and tracing a path back to the root certificate, via our CA.

We can combine them on our local computer. For example:

CHAPTER 6. SECURING YOUR WEBSITE 83

$ cat donkeyrentals_com.crt donkeyrentals_com.ca-bundle > ssl-bundle.crt

Now we have one big certificate file (ssl-bundle.crt) that contains our certificate,
any intermediate certificates, and, finally, the root certificate.

Upload Those Certificates and Key

Next, we need to put the files on our server. I like to put them in the /etc/ssl direc-
tory. The certificate bundlewe just created goes in /etc/ssl/certs/ssl-bundle.crt,
and the private key goes in /etc/ssl/private/donkeyrentals_com.key. These don’t
have to go here specifically, but it’s a good convention for nginx, and I’ll assume
they are in these directories for the rest of the tutorial.

Also, make sure our /etc/ssl/private directory has good permissions. Only the
root user should be able to access it:

$ chmod 700 /etc/ssl/private/

$ chown root /etc/ssl/private/

$ chgrp root /etc/ssl/private/

Configure nginx

We can make a new file in our nginx config directory for our website. Mine is at
/etc/nginx/conf.d/donkeyrentals.conf. Here is the file in full:

server {

listen 443;

server_name donkeyrentals.com;

root /var/www/donkeyrentals;

ssl on;

ssl_certificate /etc/ssl/certs/ssl-bundle.crt;

ssl_certificate_key /etc/ssl/private/donkeyrentals_com.key;

ssl_protocols TLSv1 TLSv1.1 TLSv1.2;

ssl_ciphers "EECDH+AESGCM:EDH+AESGCM:AES256+EECDH:AES256+EDH";

ssl_prefer_server_ciphers on;

}

CHAPTER 6. SECURING YOUR WEBSITE 84

Let’s walk through each line:

• listen 443;

The server should listen for connections on port 443. This is the conventional port
for TLS connections. When we visit a site at https:// as opposed to http://, it will
try to make a request using port 443 instead of the standard port 80.

• server_name donkeyrentals.com;

When requests come in for donkeyrentals.com to our server (on port 443), they will
now be dealt with instead of thrown away. This must match the common name
we used to create the CSR earlier.

• root /var/www/donkeyrentals;

The location of our html (and other) files for donkeyrentals.com on this server.

• ssl on;

Enable TLS/SSL.

• ssl_certificate /etc/ssl/certs/ssl-bundle.crt;

• ssl_certificate_key /etc/ssl/private/donkeyrentals_com.key;

The locations of our ssl-bundle.crt and donkeyrentals_com.key files. Again, these
are what I consider to be sensible locations for these files, but they can technically
go anywhere. Keep that .key private like your donkey-renting life depends on it.

• ssl_protocols TLSv1 TLSv1.1 TLSv1.2;

Enable only the newer TLS protocols. This implicitly disables old, outdated, and
vulnerable versions of SSL so they can’t be exploited by hackers.

• ssl_ciphers "EECDH+AESGCM:EDH+AESGCM:AES256+EECDH:AES256+EDH";

CHAPTER 6. SECURING YOUR WEBSITE 85

Set the ciphers that the client is allowed to use for encryption. There are many
different ciphers used to encrypt data when we have a secure connection. The list
above is one currently recommended set of ciphers. A full list of ciphers can be
seen here.

Side note: picking which cypher suites to use is tricky. It depends on our server, the
client, the current state of security, and many other factors. If you want to learn more,
there are lots of resources that have more information.

• ssl_prefer_server_ciphers on;

Use the server’s encryption algorithms instead of the client’s when using TLS.

Final Steps

Really all that’s left is to reload nginx and check out our server. Visit https://
donkeyrentals.com (note the s), and we should see a little lock next to the URL.
If so, nice work! If not, well, time to go back and read all those instructions again.
A day in the life of a server administrator.

Figure 6.2:

Installing a Certificate for Apache

What We Need

This might be a bit obvious, but we’ll need access to our server. We’ll need to have
Apache installed (sometimes referred to only as httpd). And, of course, we need
the certificate files that our CA sent us:

https://cipherli.st
https://openssl.org/docs/manmaster/apps/ciphers.html
https://cipherli.st
https://www.ssllabs.com/projects/best-practices/index.html
https://httpd.apache.org/docs/2.2/ssl/ssl_howto.html
http://security.stackexchange.com/questions/76993/now-that-it-is-2015-what-ssl-tls-cipher-suites-should-be-used-in-a-high-securit
https://donkeyrentals.com
https://donkeyrentals.com

CHAPTER 6. SECURING YOUR WEBSITE 86

• donkeyrentals_com.crt

• donkeyrentals_com.ca-bundle

• donkeyrentals_com.key

Additionally, we’ll need to have mod_ssl and openssl installed. We can check for
mod_ssl by running one of these two commands, depending on which version of
Apache we’re running:

Apache 2

$ apache2ctl -M | grep ssl

Apache 1

$ apachectl -M | grep ssl

If mod_ssl is installed, we’ll see something like:

ssl_module (shared)

Checking openssl is straightforward:

$ openssl version

OpenSSL 1.0.2g 1 Mar 2016

If we get something back like openssl: command not found, then we don’t have it
installed. If these are missing, our package manager (yum, brew, apt, choco, etc.)
should be able to install them for us.

Finally, you’ll need to knowwhere your Apache config files are. They are commonly
in the /etc/httpd directory. If they’re not there, a good way to find them on Linux
systems is the following command:

$ sudo find / -name httpd.conf

This will locate the main configuration file, httpd.conf. From there, we can proba-
bly find all the other directories we need like modules, conf.d, etc. We’ll need these
directories later.

CHAPTER 6. SECURING YOUR WEBSITE 87

Move All the Files

Now that we have all the files we need, we can place them in some sensible di-
rectories. If the directories don’t exist, we should create them. The .crt and
.ca-bundle files can go in the /etc/ssl/ssl.crt directory, and the .key file will go
in the /etc/ssl/ssl.key directory.

We’ll also set good permissions on the private key’s directory. We want only the
root to be able to access the file so no one else can see our private key.

$ chmod 700 /etc/ssl/ssl.key/

$ chown root /etc/ssl/ssl.key/

$ chgrp root /etc/ssl/ssl.key/

Configure Apache

Next, we need to tell Apache where to find these files and how to act as a secure
server. It’s possible a configuration may already exist that we can change. Let’s
search inside our config files to check:

$ grep -r SSLCertificate /etc/httpd

This found the file /etc/httpd/conf.d/ssl.conf, which we can modify to our liking.
If no file was found, we can build a configuration up from scratch.

A pre-existing file will have hundreds of lines, many of them commented with a #

at the start of the line. Here’s a no-comments version of the relevant part of an
example configuration:

LoadModule ssl_module modules/mod_ssl.so

<VirtualHost *:443>

DocumentRoot /var/www/donkeyrentals

ServerName donkeyrentals.com

SSLEngine on

SSLCertificateFile /etc/ssl/ssl.crt/donkeyrentals_com.crt

SSLCertificateChainFile /etc/ssl/ssl.crt/donkeyrentals_com.ca-bundle

CHAPTER 6. SECURING YOUR WEBSITE 88

SSLCertificateKeyFile /etc/ssl/ssl.key/donkeyrentals_com.key

SSLProtocol -all +TLSv1

SSLCipherSuite EECDH+AESGCM:EDH+AESGCM:AES256+EECDH:AES256+EDH

</VirtualHost>

Many of these linesmight already exist and need nomodification. Some only need
to be uncommented from the existing file and tweaked slightly. Some will need
to be added entirely. Order doesn’t matter too much, as long as all the lines are
inside of <VirtualHost *:443> and </VirtualHost> (except for the first LoadModule
line). Here’s what each line does:

• LoadModule ssl_module modules/mod_ssl.so

This tells Apache to load the mod_ssl package we installed earlier. The
modules/mod_ssl.so path is important here. It’s relative to the ServerRoot di-
rectory, which is by default /etc/httpd. The full path in the example would be
/etc/httpd/modules/mod_ssl.so.

• <VirtualHost *:443>

We start the <VirtualHost> directive off by saying this applies to any IP address, *,
on port 443, which is the conventional port for secure connections.

• DocumentRoot /var/www/donkeyrentals

The location on this server where we can find our website content like the
index.html file, images, scripts, etc. is:

• ServerName donkeyrentals.com

The name that the server identifies itself as, i.e., our common name, is the same
thing we entered when making our CSR.

• SSLEngine on

CHAPTER 6. SECURING YOUR WEBSITE 89

Enable TLS/SSL.

• SSLCertificateFile /etc/ssl/ssl.crt/donkeyrentals_com.crt

• SSLCertificateChainFile /etc/ssl/ssl.crt/donkeyrentals_com.ca-bundle

• SSLCertificateKeyFile /etc/ssl/ssl.key/donkeyrentals_com.key

Where to find our certificate, certificate authority bundle, and private key (these
are the same files we moved around previously):

• SSLProtocol -all +TLSv1

• SSLCipherSuite EECDH+AESGCM:EDH+AESGCM:AES256+EECDH:AES256+EDH

Only use TLS version 1 protocol and higher, and use currently recommended ci-
pher suites. A full list of ciphers can be seen here. Fancy stuff.

Side note: Picking which cypher suites to use is tricky. It depends on our server, the
client, the current state of security, and many other factors. If you want to learn more,
there are lots of resources that have more information.

• </VirtualHost>

Finally we make sure to close our <VirtualHost> directive.

If you need further customization, check out Apache’s documentation on the SSL
module.

Check Our Work

Now that we’re configured properly, we can make sure we didn’t cause any errors
in our Apache configs with one of two commands:

Apache 2

$ apache2ctl configtest

Apache 1

$ apachectl configtest

https://cipherli.st
https://openssl.org/docs/manmaster/apps/ciphers.html
https://cipherli.st
https://www.ssllabs.com/projects/best-practices/index.html
https://httpd.apache.org/docs/2.2/ssl/ssl_howto.html
http://security.stackexchange.com/questions/76993/now-that-it-is-2015-what-ssl-tls-cipher-suites-should-be-used-in-a-high-securit
http://httpd.apache.org/docs/current/mod/mod_ssl.html

CHAPTER 6. SECURING YOUR WEBSITE 90

If we see Syntax OK, then we’re good to go.

Finally, we restart Apache:

$ sudo service httpd restart

You’ve now configured Apache to use your brand new TLS certificate. High five!

Figure 6.3:

Wrapping Up

Time to update your résumé, LinkedIn profile, and MySpace page because now
you can make your website secure! You sat through chapters about DNS records,
technical domain name details, and my bad jokes, so of course you were able to
master TLS and the bevy of acronyms found in this chapter.

So what’s next, my donkey-renting pupil? Well, you can always learn more about
security. OWASPmaintains a ton of information on current security threats, initia-
tives, andmany other resources. SSLLabs has some great tools and guides to help
ensure your websites are secure and follow the best practices. They even have a
tool that will test and grade the security of any website.

A large part of security is keeping up to date with new patches and upgrades for
the software you use. If you’re using OpenSSL, I suggest following their security
vulnerabilities.

TheW3Chas lots of great information aboutweb security protocols and standards.
Finally, if you’re a regular to Hacker News, anymajor security news inevitably pops
up there.

Another good step is finding out what your operating system recommends for se-
curity. Any system worth using will have security updates, guides, and best prac-
tices. A quick search for <your operating system> security should return quite a

https://www.owasp.org/
https://www.ssllabs.com
https://www.ssllabs.com/ssltest/index.html
https://www.ssllabs.com/ssltest/index.html
https://www.openssl.org/news/vulnerabilities.html
https://www.openssl.org/news/vulnerabilities.html
https://www.w3.org
https://www.w3.org/2001/tag/doc/web-https
https://news.ycombinator.com

CHAPTER 6. SECURING YOUR WEBSITE 91

bit.

Finally, as I noted previously, some people have been switching away from
OpenSSL because of its shortcomings. If that sounds like your thing, here’s that
list again:

• NSS by Mozilla
• s2n by Amazon
• LibreSSL by OpenBSD
• BoringSSL by Google (not recommended for public use)

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://github.com/awslabs/s2n
https://blogs.aws.amazon.com/security/post/TxCKZM94ST1S6Y/Introducing-s2n-a-New-Open-Source-TLS-Implementation
http://www.libressl.org
https://boringssl.googlesource.com/boringssl/
https://www.imperialviolet.org/2015/10/17/boringssl.html

Glossary

A Record

An A record or address record is a DNS record type that points a hostname to an
IPv4 address. Example:

• Hostname: www
• IP Address: 12.34.56.78

See the section on A records to learn more.

AAAA Record

An AAAA record or quad-A record is a DNS record type that points a hostname to
an IPv6 address. Example:

• Hostname: www
• IP Address: 2620:0:861:ED1A::1

Note that this IP address example is shortened. See the section on AAAA records
to learn more about shortened IPv6 addresses.

ALIAS Record

A non-standard record type first used at DNSimple. It allows CNAME-like redi-
rections on the apex domain, which is not normally allowed. For example,
donkeyrentals.com could point to myapp.herokuapp.com instead of an IP address.
Normally, this would need to be done with www.donkeyrentals.com.

92

https://support.dnsimple.com/articles/alias-record/

CHAPTER 7. GLOSSARY 93

See the section on ALIAS or ANAME records for more information.

ANAME Record

See ALIAS Record.

Apex Domain

The domain without anything before it. Example: donkeyrentals.com, but not
www.donkeyrentals.com or magical.donkeyrentals.com.

Bare Domain

See Apex Domain.

BIND

Short for Berkeley Internet Name Domain, this suite of software is made to run DNS
servers. It is widely used across the industry. The BIND software suite includes
tools used in this book, such as dig, host, nslookup, and many others. More infor-
mation can be found on BIND’s website: https://www.isc.org/downloads/bind/

ccTLD

Country Code Top-level Domains are domains representing a country. Examples
include io (Indian Ocean), bz (Belize), and fi (Finland). Some ccTLDs have prereq-
uisites for registration, but, for themost part, anyone can register a domain at any
ccTLD.

See also: TLD.

Certificate Authority (CA)

Companies that issue certificates. This is where you go to upload a certificate sign-
ing request (CSR) and get back a certificate. Examples of these are Comodo, Dig-
iCert, and RapidSSL.

See the section on certificate authorities for more information.

CNAME Record

Canonical Name records or CNAME records are a DNS record type that point a host-
name to a domain name, as opposed to an IP address. Example:

• Hostname: redirect
• Target Host: rabbitrentals.com

https://www.isc.org/downloads/bind/

CHAPTER 7. GLOSSARY 94

Note: These cannot be used on the Apex Domain. In the example above, this
would point redirect.donkeyrentals.com to rabbitrentals.com. You cannot use a
CNAME to point donkeyrentals.com in the same way.

See the section on CNAME records for more information.

Common Name

In regards to TLS certificates, the common name (or CN) is the “place” that the
certificate is securing. For example, a certificate for donkeyrentals.com will have
donkeyrentals.com as its common name. The domain being visited and the com-
mon namemuchmatch exactly. If they don’t, it will cause a security warning when
a user visits the site.

Wildcard certificates are used if multiple subdomains need to be secure. In
this case, the common name can use the * character to specify all subdo-
mains, e.g., *.donkeyrentals.com. Now, users can visit any subdomain such as
secure.donkeyrentals.com or www.donkeyrentals.com and the certificate will be
valid.

dig

An abbreviation for domain information groper, this is a utility used to ask questions
and receive answers from DNS servers about their records. For example, we can
see the value of the A record for donkeyrentals.com with the following command:

$ dig donkeyrentals.com A

Dig is included in the BIND suite of software DNS utilities. It is similar to the host
tool, but is far more verbose and explicit.

See also: BIND, host, nslookup.

See the section on dig for more information.

DNS

Short for (the) Domain Name System, the whole network of servers holding
records that point to other records or servers. See the rest of this book for more
information.

Domain Name Front Running

CHAPTER 7. GLOSSARY 95

Often, registrar websites will let you search to see if a domain is already taken. You
type in the domain name and the registrar says, “Taken, sorry.” or “It’s available!
Would you like to register?” If you choose not to register, this domain name should
just continue being unregistered until a customer comes along and grabs it.

But some malicious registrars will actually register the domain after it’s been
searched for, then sell it back to you for a higher price. The nerve! This is domain
name front running.

FQDN

A fully qualified domain name, which contains all hostnames (including the root
zone) combined and separated with a period. Since the root zone does not have
any text associated with it like com, a FQDN ends with a period. Example:

shop.donkeyrentals.com.

gTLD

Generic Top-level Domains are, for the most part, domains that are not associ-
ated with a country. Examples include com (commercial), org (organizations), and
dentist (dental practices). Some gTLDs have prerequisites for registration, but, for
the most part, anyone can register any gTLD.

See also: TLD.

host

Host is a tool in the BIND suite of software used to ask questions and receive an-
swers from DNS servers about their records. For example, we can see the value
of the A record for donkeyrentals.com with the following command:

host -t A donkeyrentals.com

It is similar to dig but attempts to have amuchmore succinct and readable output.

See also: BIND, dig, nslookup.

See the section on host for more information.

Hostname

CHAPTER 7. GLOSSARY 96

Each individual part of a domain. For example, in food.donkeyrentals.com, the
hostnames are food, donkeyrentals, and com. Putting these together with dots in
between creates a domain.

ICANN

The Internet Corporation for Assigned Names and Numbers plays a large part of
running the internet as a whole. They run the root name servers where all of the
TLDs are found. They also police misbehaving registries, decide what TLDs are
allowed to be added, and assign IPv4 and IPv6 addresses.

InterNIC

This stands for Network Information Center, with the Inter- prefix presumably for
the internet. In the early days of the internet, (1972–1990ish) they handled domain
registrations for com, edu, gov, mil, net, org, and us domains. InterNIC is now part
of ICANN.

IPv4

Short for Internet Protocol version 4, this protocol defines addresses as a se-
quence of four integers (0–255) separated by periods. Examples include 1.2.3.4,
127.0.0.1, and 273.115.5.53.

IPv6

Short for Internet Protocol version 6, this protocol defines addresses as a
sequence of eight groups of four hexadecimal digits (0–FFFF), separated
by colons. Examples include 2620:0000:0861:ED1A:0000:0000:0000:0001 and
2620:0:861:ED1A::1.

Some IPv6 addresses can also be shortened significantly, as seen in the second
example above. See the AAAA records section to learn more.

MX Record

An MX record or mail exchange record is used to route email requests to mail
servers. It has an additional priority property which allows multiple records for
the same hostname to point to different servers and act as a backup. For exam-
ple, a record with the priority of 10will be used before a record with the priority of
20.

See the section on MX records for more information.

Nameserver

CHAPTER 7. GLOSSARY 97

The server which stores all DNS records for a particular domain. Think of this as a
phonebook where DNS records are listed instead of people. You can only find the
records you’re looking for if you look in the right phonebook.

nslookup

Short for nameserver lookup, this is a tool used to ask questions and receive an-
swers from DNS servers about their records. Included in the BIND suite of utilities,
it is currently deprecated in favor of dig and host. While it can be used similarly to
those tools, it also has an interactive mode:

$ nslookup

> set type=A

> donkeyrentals.com

See also: BIND, dig, host.

NS Record

A NS record or nameserver record points to the server that holds all other DNS
records for a particular domain.

See also: Nameserver.

Public-key Infrastructure (PKI)

Public-key infrastructure. The system we (the internet) have agreed on to set up
and maintain secure certificates. Kind of like how society decided we should fund
the government, so we use the system of taxes. This system is used by browsers,
servers, certificate authorities, andmore to ensure we all have safe, secure brows-
ing experiences.

See the section on public-key infrastructure for more information.

Private Key

A long, unique string of random looking numbers and letters that represents
someone or something. Maybe that thing is a server, a website, or your computer.
Imagine a physical lock and a key. In public key encryption, the public key is the
lock, and the private key is the key. Confusing terms, yes, but that’s more or less
how it works. Never give your private key out or make it visible to the world.

See the section on public-key infrastructure for more information.

CHAPTER 7. GLOSSARY 98

Public Key

As opposed to a private key, this is a different long, unique string of random-looking
numbers and letters that represents someone or something. Feel free to give this
out to anyone; it does not have to be private. Putting this somewhere else (like a
server) usually gives you access, so long as you have the matching private key.

See the section on public-key infrastructure for more information.

Public-key Encryption

See Public-key Cryptography

Public-key Cryptography

The system for creating private and public keys. Imagine some crazymath that can
take input like admin@donkeyrentals.com and spit out two files of garbage (public
and private key). We use these keys as a form of security, which works well even
if we don’t understand the crazy algorithms behind encryption.

See also: Public-key Infrastructure

Quad-A Record

See AAAA Record

ping

A tool that makes a simple request to a server with an IPv4 address and returns
how long that request took (among other things). It’s a useful tool for checking to
see if a server is up because, if the server is down, it will respond saying the ping
timed out.

See the section on ping for more information.

ping6

Just like its sibling ping, but uses IPv6 addresses instead.

See also: ping

Registrar

This is a company whose job it is to keep records on behalf of customers. As a
customer, you talk to the registrar to lease a domain.

Registry

CHAPTER 7. GLOSSARY 99

A registry manages one or more top-level domains, like com, or co.uk, or dentist.
They communicate with registrars to lease domains to customers. Registries
themselves do not interact with the general domain-buying public.

Reverse DNS (RDNS)

Reverse DNS. This is when you try to get a domain name from an IP address. You
can try this easily with dig:

$ dig +short -x 66.220.158.68

edge-star-mini-shv-07-frc3.facebook.com.

Root Domain

See Apex Domain.

Root Zone

The top level of the DNS hierarchy. Similar to how the donkeyrentals.com name-
server records are located at the com registry, com’s nameserver records are located
at the registry called the root zone.

There are 13 root domains (a.root-servers.net through m.root-servers.net),
which represent many servers (500+) around the globe.

SRV Record

An SRV record or service record is used to make a specific connection to an IP ad-
dress using a specific port. Services might include a CalDAV, XMPP, or Minecraft
server, among many others.

SRV records also offer two other attributes: priority and weight. Whenmultiple re-
quests are made to the service, they are sent to servers with lower-numbered pri-
ority first. When multiple servers have the same priority, requests are distributed
across them according to their weight.

See the section on SRV records for more information.

SSL

Secure Sockets Layer. This protocol was replaced by TLS (Transport Layer Security)
but is still commonly referred to when speaking about secure certificates. Thanks
everyone for making it so confusing.

CHAPTER 7. GLOSSARY 100

See the chapter on securing your website for more information.

Subdomain

A domain that is part of another domain. For example, shop.donkeyrentals.com is
a subdomain of donkeyrentals.com, which is a subdomain of com. A subdomain is
also technically a domain, and all domains (except for the root zone) are techni-
cally subdomains. Use subdomain when talking specifically about a domain that
is defined by its parent domain:

“ Welcome to donkeyrentals.com! Visit our shop at the subdomain
shop.donkeyrentals.com.

TLD

Top-level Domain. These are the last part of a domain. These include generic TLDs
(e.g., com, org, and dentist) and country code TLDs (e.g., uk, dj, and io).

See the IANA’s Root Zone Database for a full list of TLDs.

TTL

Short for time-to-live, the amount of time left until a DNS record is re-fetched from
its authoritative source, i.e., when the records cache will expire.

By the way, live rhymes with give not dive, as in “This is how long the data will live.”

TXT Record

Text records are for storing arbitrary data with a hostname. Example:

• Hostname: message
• IP Address: Hello

This may seem like a trivial example, and it is. However, real-world use cases do
exist, such as verifying an email server or providing proof of ownership for a TLS
record.

See the section on TXT records for more information.

WHOIS

https://www.iana.org/domains/root/db

CHAPTER 7. GLOSSARY 101

A protocol and tool that retrieves information about who is in control of a domain
name. Confusingly, the protocol (WHOIS) and the tool (whois) are different; whois
uses the WHOIS protocol to get domain information.

Basic usage:

$ whois donkeyrentals.com

See the section on whois for more information.

X.509

X.509 is a list of standards that specify public key certificates, certificate revoca-
tion lists, attribute certificates, and a certification path validation algorithm. It’s
like being in a secret club, but, instead of building a treehouse, you agree to use
certainmethods to create and structure certificates and how to communicate with
certificate authorities. TLS/SSL uses X.509 certificates.

This is in contrast to a model such as PGP, where you get together with all your
nerdy friends and sign each other’s certificates. X.509 certificates rely on being
signed by global certificate authorities to be valid, among other formatting require-
ments.

See the section on securing your website for more information.

Appendix

Installing tools

We will be installing the software used in this book with a package manager. Unix
and Linux operating systems often come with a package manager installed. Pack-
age managers are handy because, in addition to installing software, they install
supporting packages, keep an up-to-date list of safe software packages, andmake
it easy to uninstall software later.

Think of a package like an application: software written to do a specific set of tasks.
The difference is that these packages are almost always used from the command
prompt instead of opening up a graphical interface. Installing graphical applica-
tions via a package manager is not unheard of, however.

The tools used in this book (dig, host, openssl, nslookup, and whois) are all avail-
able via a package manager. While this is incredibly convenient, it is even more
convenient that many of these tools are already installed.

From your shell or command prompt, you can use the which command to see if a
tool is installed:

$ which dig

/usr/bin/dig

Or the where command on Windows:

102

CHAPTER 8. APPENDIX 103

$ where dig

C:\ProgramData\chocolatey\bin\dig.exe

You can replace dig with any of the following:

• host

• openssl

• nslookup

• whois

If the tool is installed, it will return its location on the system. If not, it will say
<command> not found. If that is the case, you can use your package manager to
install it, as described below.

Mac and Windows

Neither Mac OS X nor Windows comes with a package manager. Luckily, this is
pretty easy to resolve. If you are using either of these systems, check out the
Package Management for Mac OS X or Package Management for Windows section
before moving on to the next section.

Installation

Below are the basic commands to install each tool on seven different operating
systems. For the purposes of this book, and perhaps the world at large, this is all
you will need.

BIND (which includes dig, host, and nslookup)

• Arch Linux: pacman -S bind

• CentOS: yum install bind

• Debian: apt-get install bind9

• Gentoo: emerge -atv net-dns/bind

CHAPTER 8. APPENDIX 104

• Fedora: yum install bind

• Mac OS X: brew install bind

• Ubuntu: apt-get install bind9

• Windows: choco install bind-toolsonly

whois

• Arch Linux: pacman -S whois

• CentOS: yum install whois

• Debian: apt-get install whois

• Gentoo: emerge -atv net-misc/whois

• Fedora: yum install whois

• Mac OS X: brew install whois

• Ubuntu: apt-get install whois

• Windows: choco install whois

OpenSSL

• Arch Linux: pacman -S openssl

• CentOS: yum install openssl

• Debian: apt-get install openssl

• Gentoo: emerge -atv dev-libs/openssl

• Fedora: yum install openssl

• Mac OS X: brew install openssl

• Ubuntu: apt-get install openssl

• Windows: choco install openssl.light

Note for OpenSSL on Windows: You will also need to add OpenSSL’s bin directory to
your path. Copy and paste the following in the Command Prompt:

$ setx path "%PATH%;C:\Program Files\OpenSSL\bin"

CHAPTER 8. APPENDIX 105

Installation check

To ensure the tools installed properly, run aquick which <command>or where <command>.
For a slightly more involved check, invoke the command in its simplest form:

• dig: dig -v – Displays the current version of the dig command.
• host: host – Displays list of command options.
• openssl: openssl version – Displays the current version of the openssl com-
mand.

• nslookup: nslookup – Enters interactive mode; type exit to close.
• whois: whois – Displays list of command options.

Package Management for Mac OS X

Mac OS X doesn’t come with a package manager installed. I highly recommend
homebrew, which can be installed with the following command:

$ /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

Once it completes, you can nowuse the brew command to install, uninstall, update,
and perform many other functions on tons of packages for your system:

$ brew install whois

$ brew uninstall whois

$ brew search openssl

$ brew upgrade openssl

That’s it! Now you should be all set to install the tools.

Package Management for Windows

The bad news? Windows does not comewith a packagemanager. The good news?
It is pretty easy to install one. In particular, we are going to install chocolatey.

http://brew.sh
https://chocolatey.org

CHAPTER 8. APPENDIX 106

Open your Command Prompt by using the Startmenu to search for Command. When
you see the Command Prompt, right click it and “Run as administrator.”

Now, copy and paste the following crazy looking command into it (trust me, don’t
even try to type it out):

@powershell -NoProfile -ExecutionPolicy Bypass -Command "iex ((new-object net.webclient).DownloadString('https://chocolatey.org/install.ps1'))" && SET PATH=%PATH%;%ALLUSERSPROFILE%\chocolatey\bin

This will take some time, perhaps a minute or two for a modern-ish computer. If
it takes significantly longer, try restarting, and make sure you open the Command
Prompt as an administrator.

Once it is done, you will have the chocolatey package manager installed on your
system. Use the choco tool to issue basic commands. For example:

$ choco install whois

$ choco uninstall whois

$ choco search openssl

$ choco upgrade chocolatey

I also recommend enabling the allowGlobalConfirmation feature for chocolatey. If
you do not, it will ask if you want to install each package every time:

$ choco feature enable -n=allowGlobalConfirmation

To disable this feature, run:

$ choco feature disable -n=allowGlobalConfirmation

Now you can install tons of great packages!

Additional installation

This book makes heavy use of the BIND suite of tools, like dig, host, and nslookup.
Chocolatey can install them, but they will also need some additional supporting
software. Specifically, the succinctly named Visual C++ Redistributable for Visual
Studio 2012 Update 4.

Installation is pretty simple:

https://chocolatey.org/packages
https://www.isc.org/downloads/

CHAPTER 8. APPENDIX 107

1. Visit this website.
2. Download the x64 or x86 version of the software based on your system

architecture. If you are not sure what system architecture you have, follow
these steps:

a. On Windows 7, open the Start menu and right-click on Computer, then
click Properties

b. On Windows 10, right click the Start menu and click System

c. In the System section, System type should say 32- or 64-bit Operating
System.

d. Download x64 for 64-bit systems and x86 for 32.

3. Double click the installer and let it do it’s thing.
4. dig, host, and nslookup should work without issue.

Recommended Registrars

Feeling overwhelmed by the number of registrars out there? Here are three that I
recommend:

• Hover
• DNSimple
• Gandi

Hover has a great control panel and awesome customer support if you need it.
The only thing they lack is ALIAS/ANAME record support. DNSimple lives up to
its name and supports many features, including ALIAS/ANAME. They cost slightly
more than other registrars, but it’s worth it if you’re a bit intimidated by managing
a domain name. Gandi comes very highly recommended from colleagues.

https://www.microsoft.com/en-us/download/details.aspx?id=30679
https://www.hover.com
https://dnsimple.com
https://www.gandi.net

Conclusion

Afterword

Sowhat’s left? You read this book, learned some things about DNS, TLS certificates,
and domains in general. Congratulations! I also have a bit of advice for you.

I’ve spent a lot of time reading through Server Fault to understand the particulars
of a topic. It’s a great Q&A site where you can often find your question has already
been asked and answered. If not, you can sign up and ask for free.

I find that I learn best when I’m experimenting. If you have the means, I highly
suggest getting a spare domain to play around with. Set up a quick site and just go
crazy with different record types. Query them with dig and see what you can get
out of them. Redirect to other siteswith CNAMEs, chat with friends via TXT records,
etc. This can help solidify your understanding of the whole domain process.

If you really want to dive into the deep technical details of how DNS or TLS works,
RFCs (requests for comments) are the way to go. An RFC document is usually
made by a standards committee to decide how certain technology will work. It
includes everything a developer would need to create software that works with
other like-minded software. RFCs are playbooks that keep distributed systems
like DNS working, even when multiple different, often competing, organizations
write software for a purpose.

Wikipedia keeps a great list of DNS related RFCs here.

Last, and most importantly, continue to be curious. Curiosity wrote this book,
curiosity likely got you through this book, and curiosity will keep you learning, in-
specting, and researching to find out more. That is your most powerful tool. Use

108

https://serverfault.com
http://www.ietf.org/rfc.html
https://en.wikipedia.org/wiki/Domain_Name_System#RFC_documents

CHAPTER 9. CONCLUSION 109

it to its fullest extent.

Thanks

First of all, thank you dear reader. I wrote this book so you could absorb and enjoy
it. If you’ve gotten this far, you probably don’t hate it, which is a compromise I can
settle for.

But also, I must thank a number of great people for helping me with this book:

• Caleb Thompson and thoughtbot, for thinking, “Yeah, you’re probably qual-
ified to write a book.” Caleb especially, for answering all my inane questions
and encouraging me to write.

• Mike Burns, for tearing apart my god-awful first draft of the “Securing Your
Website” chapter.

• Frank Wang, for patiently explaining how public-key infrastructure works
and reading through the “Securing Your Website” chapter.

• My wife, Elizabeth, for reading a chapter once and hating it, but loving me
despite that.

• My mother, Kathie, who read early drafts and even opened the command
line a few times to test things.

• Gabe Berke-Williams, for laughing at my incredibly dumb jokes and testing
absurd scenarios with me.

• Josh, Diana, and Tute, for taking time to read through chapters and fixing
my grammar and spelling mistakes.

	Introduction
	Welcome
	Who is this book for?
	Who is this book not for?
	How to Read This Book
	Software

	Registering A New Domain
	Types of DNS Records
	A
	AAAA
	CNAME
	NS
	TXT
	SRV
	MX
	ALIAS or ANAME
	What If It All Goes Wrong?

	Tools of the Trade
	How DNS Works
	dig
	nslookup
	WHOIS
	host
	ping & ping6

	Common Scenarios
	Creating a Subdomain
	Transferring a Domain
	Connecting a Domain to an External Service
	Remove www From a Domain
	Use a CNAME on the Apex Domain
	The Website Is Only a Blank or Placeholder Page
	My Old Website Is Showing Up
	Redirect One Domain to Another

	Securing Your Website
	TLS and SSL
	Certificates
	Be Prepared
	Getting a Certificate
	Installing a Certificate for nginx
	Installing a Certificate for Apache
	Wrapping Up

	Glossary
	Appendix
	Installing tools
	Package Management for Mac OS X
	Package Management for Windows
	Recommended Registrars

	Conclusion
	Afterword
	Thanks

